Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình xin sửa lại đề một chút
Bài 3: Cho ΔABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN. Vẽ BD⊥AM tại D và CE⊥AN tại E.
a) Cm ΔAMN cân
b) Cm DB=CE
Bài làm:
a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC(ΔABC cân tại A)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
BM=CN(gt)
Do đó: ΔABM=ΔACN(c-g-c)
Suy ra: AM=AN(hai cạnh tương ứng)
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
b) Xét ΔMBD vuông tại D và ΔNCE vuông tại E có
BM=CN(gt)
\(\widehat{M}=\widehat{N}\)(ΔABM=ΔACN)
Do đó: ΔMBD=ΔNCE(Cạnh huyền-góc nhọn)
Suy ra: DB=EC(Hai cạnh tương ứng)
a/ Có \(\widehat{ABC}=\widehat{ACB}\) (t/g ABC cân tại A)
=> \(180^o-\widehat{ABC}=180^o-\widehat{ACB}\)
=> \(\widehat{ABH}=\widehat{ACK}\)
b/ Xét t/g ABH và t/g ACK có
AB = AC
\(\widehat{ABH}=\widehat{ACK}\)
BH = CK
=> t/g ABH = t/g ACK (c.g.c)
=> AH = AK
=> t/g AHK cân tại A
c/ Xét t/g BHM vuông tại M và t/g CKN vuông tại N có
BH = CK\(\widehat{AHK}=\widehat{AKH}\) (t/g AHK caantai A)
=> t/g BHM = t/g CKN (ch-gn)
=> BM = CNd/ Có
AH = AK
HM = KN (t.g BHM = t/g CKN)
=> AM =AN
=> t/g AMN cân tại A
=> \(\widehat{AMN}=\dfrac{180^o-\widehat{HAK}}{2}\)
Mà \(\widehat{AHK}=\dfrac{180^o-\widehat{HAK}}{2}\) (t/g AHK cân tại A)
=> \(\widehat{AMN}=\widehat{AHK}\)
Mà 2 góc này đồng vị
=> MN// HK
a) Ta có: \(\widehat{ABC}+\widehat{ABH}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACK}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABH}=\widehat{ACK}\)(đpcm)
b) Xét ΔABH và ΔACK có
AB=AC(ΔABC cân tại A)
\(\widehat{ABH}=\widehat{ACK}\)(cmt)
BH=CK(gt)
Do đó: ΔABH=ΔACK(c-g-c)
nên AH=AK(hai cạnh tương ứng)
Xét ΔAHK có AH=AK(cmt)
nên ΔAHK cân tại A(Định nghĩa tam giác cân)
c) Xét ΔMHB vuông tại M và ΔNKC vuông tại N có
BH=CK(gt)
\(\widehat{H}=\widehat{K}\)(hai góc ở đáy của ΔAHK cân tại K)
Do đó: ΔMHB=ΔNKC(cạnh huyền-góc nhọn)
Suy ra: BM=CN(hai cạnh tương ứng)
d) Ta có: ΔMHB=ΔNKC(cmt)
nên MH=NK(hai cạnh tương ứng)
Ta có: AM+MH=AH(M nằm giữa A và H)
AN+NK=AK(N nằm giữa A và K)
mà AK=AH(cmt)
và MH=NK(cmt)
nên AM=AN
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAMN cân tại A(cmt)
nên \(\widehat{AMN}=\dfrac{180^0-\widehat{MAN}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)
hay \(\widehat{AMN}=\dfrac{180^0-\widehat{HAK}}{2}\)(1)
Ta có: ΔAHK cân tại A(cmt)
nên \(\widehat{AHK}=\dfrac{180^0-\widehat{HAK}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{AHK}\)
mà \(\widehat{AMN}\) và \(\widehat{AHK}\) là hai góc ở vị trí đồng vị
nên MN//HK(Dấu hiệu nhận biết hai đường thẳng song song)
a) \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).
Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)
Xét \(\Delta ABM\) và \(\Delta ACN:\)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)
\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)
b) Xét \(\Delta ABH\) và \(\Delta ACK:\)
\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)
\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).
\(\Rightarrow\) AH = AK (2 cạnh tương ứng).
c) Xét \(\Delta AOH\) và \(\Delta AOK:\)
\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)
\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).
\(\Rightarrow\) OH = OK (2 cạnh tương ứng).
Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)
\(\Rightarrow\) OB = OC.
\(\Rightarrow\Delta OBC\) cân tại O.
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN
b: góc MBD=góc ECN
=>góc KBC=góc KCB
=>K nằm trên trung trực của BC
=>A,H,K thẳng hàng
Nếu BAC = 60 độ với tam giác ABC cân nữa thì thành tam giác đều rồi?
Đâu có AB > BC được?
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
t lười vẽ hình lắm, vô cùng xin lỗi :(
a) Vì ∆ ABC cân tại A nên AH vừa là đường cao, vừa là trung tuyến => HB = HC = 12:2 = 6
Áp dụng định lí Py-ta-go cho ∆ AHB, ta được: AH2 + BH2 = AB2 => AB2 = 122 + 92 = 225 = 152 => AB = 15 = AC
=> PABC = AB + AC + BC = 15 + 15 + 18 = 48
b) Vì BM = CN (gt) ; HB = HC (cmt) => HB + BM = HC + CN => HM = HN => AH là trung tuyến của ∆ AMN (1)
Lại có: AH ┴ BC hay AH ┴ MN => AH là đường cao của ∆ AMN (2)
Từ (1) và (2) =>∆ AMN cân tại A
c) Xét ∆ BIM và ∆ CKN vuông tại I và K có:
MB = NC (gt) ; ^KNC = ^IMB (∆AMN cân tại A) => ∆ BIM = ∆ CKN ( ch - gn ) => MI = KN
Mà AM = AN (∆AMN cân tại A) => AI = AK => ∆ AIK cân tại A
=> ^AIK = ^AKI = ( 180o - ^MAN ) : 2 = ^AMN = ^ANM => IK // MN (đồng vị) hay IK // BC
d) Vì IK // MN => ^IKN = ^KCN (slt) ; ^KIB = ^IBM (slt)
Lại có: ^IBM = ^KCN ( vì ∆BIM=∆CKN ) => ^IKN = ^KIB hay ^OIK = ^OKI => ∆OKI cân tại O => OK = OI
Xét ∆ AIO và ∆ AKO có:
AI = AK ( ∆AIK cân tại A) ; OK = OI (cmt) ; AO (chung) => ∆ AIO = ∆ AKO ( c-c-c )
=> ^OAI = ^OAK (3)
Vì ∆AMN cân tại A => AH là phân giác của ∆AMN.=> ^HAM = ^HAN hay ^HAI = ^HAK (4)
Từ (3) và (4) => A, O, H thẳng hàng.
Ya, that's it!
a, Xét tam giác ABC cân tại A có AH vuông BC
=> AH đồng thời là đường trung tuyến
=> BH = CH
b, Theo Pytago tam giác AHB vuông tại H
\(BH=\sqrt{AB^2-AH^2}=6cm\)
=> BC = 2BH = 12 cm
c, Vì tia đối của BC là tia BM
=> BM = BC
Vì tia đối của CB là tia CN
=> CN = BC
=> BM + BH = CN + CH
hay H là trung điểm MN
Xét tam giaccs AMN có :
AH là đường cao
AH là đường trung tuyến
=> AH đồng thời phân giác