K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

hình mình vẽ tượng trưng thôi nha

đề của bạn 1 số chỗ hơi nhầm đó nha.

A B C H F E N M

a)

dựa theo công thức tính diện tích tam giác, ta có:

S\(\Delta\)ABC = \(\dfrac{1}{2}.12.16=96\left(cm^2\right)\)

ta có:

AN = NC ; AM = MB

=> MN là đường trung bình của tam giác ABC

do đó MN//= \(\dfrac{1}{2}\)BC

=> MN = 6 cm

b) ta có:

AM = MB ; HM = ME

=> AHBE là hình bình hành

Mà ta lại thấy góc AHB vuông

=> AHBE là hình chữ nhật

c) ta có:

AH= HF ; CH = HB

=> ABFC là hình bình hành

Mà ta thấy AF \(\perp\) CB

suy ra ABFC là hình thoi.

d) mk k hỉu cái đề cho lắm nên thôi nha.haha

chúc bạn học tốt

a: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=12\cdot8=96\left(cm^2\right)\)

Xét ΔBAC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN=BC/2=6(cm)

b: Xét tứ giác AHBE có 

M là trung điểm của AB

M là trung điểm của HE

Do đó:AHBE là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBE là hình chữ nhật

c: Xét tứ giác ABFC có

H là trung điểm của AF

H là trung điểm của BC

Do đó: ABFC là hình bình hành

mà AB=AC

nên ABFC là hình thoi

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

29 tháng 12 2018

Ai trả lời thì 3 k

29 tháng 12 2018

đúng nha