Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét \(\Delta\)BMC và \(\Delta\)AMD có:
\(\widehat{DAM}\)=\(\widehat{MCB}\)(vì so le)
AM=MC(gt)
\(\widehat{AMD}\)=\(\widehat{CMB}\)(vì đối đỉnh)
\(\Rightarrow\)\(\Delta\)BMC=\(\Delta\)AMD(g.c.g)
b,xét tam giác AMB và tam giác CMD có:
AM=MC(gt)
\(\widehat{AMB}\)=\(\widehat{CMD}\)(Vì đối đỉnh)
MB=MD(t.giác BMC=t.giác AMD
=> t.giác AMB=t.giác CMD(c.g.c)
=>AB=CD
vì AB=AC(gt) màAB=CD=> AC=CD
=> t.giác ACD cân tại C
a: Xét ΔBMC và ΔAMD có
\(\widehat{MCB}=\widehat{MAD}\)
MC=MA
\(\widehat{BMC}=\widehat{AMD}\)
Do đó:ΔBMC=ΔAMD
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCDlà hình bình hành
Suy ra: AB//CD và AB=CD
=>CD=CA
hay ΔCAD cân tại C
c: CE=CA
nên CE=2CM
=>CE=2/3EM
Xét ΔEDB có
EM là đường trung tuyến
EC=2/3EM
Do đó: C là trọng tâm của ΔBDE
a: Xét ΔMBC và ΔMDA có
góc MCB=góc MAD
MC=MA
góc BMC=góc DMA
=>ΔMBC=ΔMDA
b: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔAMB=ΔCMD
=>AB=CD
=>CA=CD
=>ΔCAD cân tại C
c: góc BCD=góc BAD
góc BCE=180 độ-góc ACB
=góc ABC+góc BAC
=góc ACB+góc BAC
=góc CAD+góc BAC
=góc BAD
=>góc BCD=góc BCE
d: Xét ΔEBD có
EM là trung tuyến
EC=2/3EM
=>C là trọng tâm
=>DC đi qua trung điểm của BE
a: Xet ΔCDB co
CA là đường cao, là trung tuyến
nên ΔCDB cân tại C
b,c: Xét ΔCBD có
A là trung điểm của DB
AM//CB
=>M là trung điểm của CD
ΔCAD vuông tại A
mà AM là trung tuyến
nên MA=MD
=>ΔMAD cân tại M
d: Xét ΔCDB có CM/CD=CN/CB
nên MN//BD
a: Xét ΔBMC và ΔAMD có
\(\widehat{BCM}=\widehat{ADM}\)
MA=MC
\(\widehat{BMC}=\widehat{AMD}\)
Do đó: ΔBMC=ΔAMD
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó; ABCD là hình bình hành
Suy ra: AB=CD
mà AB=AC
nên CD=CA
=>ΔCAD cân tại C