K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`a,`

Vì `\Delta ABC` cân tại A

`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$

Xét `\Delta ABH` và `\Delta ACH`:

`\text {AB = AC}`

$\widehat {B} = \widehat {C}$

`\text {HB = HC (AH là đường trung tuyến)}`

`=> \Delta ABH = \Delta ACH (c-g-c)`

`b,`

Vì `\Delta ABH = \Delta ACH (a)`

`->` $\widehat {BAH} = \widehat {CAH} (\text {2 góc tương ứng})$

`-> \text {AH là đường phân giác của}` `\Delta ABC`.

loading...

10 tháng 5 2023

ròi AH là cạnh hay góc mà góc chung hay dữ v c :>.

`a,`

Vì `\Delta ABC` cân tại A

`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$

Xét `\Delta ABH` và `\Delta ACH`:

`\text {AB = AC}`

$\widehat {B} = \widehat {C}$

$\widehat {AHB} = \widehat {AHC} (=90^0) (\text {AH là đường cao của} \Delta ABC)$

`=> \Delta ABH = \Delta ACH (ch-gn)`

`b,`

Vì `\Delta ABH = \Delta ACH (a)`

`->` $\widehat {BAH} = \widehat {CAH} (\text {2 cạnh tương ứng})$

`-> \text {AH là đường phân giác của}` `\Delta ABC`

`c,`

Vì `\Delta ABH = \Delta ACH (a)`

`-> \text {HB = HC}`

Ta có:

`\text {AH} \bot \text {BC}`

`\text {HB = HC}`

`-> \text {AH là đường trung trực của}` `\Delta ABC`.

loading...

1 tháng 5 2023

phần b thiếu điề kiện bạn ạ

 

a: Sửa đề: đường cao AM, cm ΔABM=ΔACM

Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC
AM chung

=>ΔABM=ΔACM

b: ΔABM=ΔACM

=>MB=MC

=>AM là đường trung tuyến

c: AM=3/2AG=9cm

a: Xét ΔAHB và ΔAHC có

AB=AC
góc BAH=góc CAH

AH chung

=>ΔAHB=ΔAHC

b: Xet ΔABC có

AH,BD là trung tuyến

AH cắt BD tại G

=>G là trọng tâm

c: Xét ΔABC có

H là trung điểm của BC

HE//AC

=>E là trung điểm của AB

=>C,G,E thẳng hàng

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

DO đó: ΔABH=ΔACH

b: Xét ΔEDH vuông tại D và ΔEDC vuông tại D có 

ED chung

HD=CD

Do đó: ΔEDH=ΔEDC

11 tháng 5 2022

có câu c ko bạn 

 

15 tháng 2 2022

a, Xét tam giác ABH và tam giác ACH ta có 

AB = AC (gt) 

AH _ chung

^AHB = ^AHC = 900

Vậy tam giác ABH = tam giác ACH ( ch - cgv ) 

b, Xét tam giác ABC cân tại A

AH là đường cao đồng thời là đường trung tuyến 

=> H là trung điểm BC 

c, Do H là trung điểm BC => HB = 6/2 = 3 cm 

Theo định lí Pytago tam giác AHB vuông tại H

\(AH=\sqrt{AB^2-BH^2}=\sqrt{25-9}=4cm\) 

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

b) Xét ΔAMD và ΔCMH có 

MA=MC(gt)

\(\widehat{AMD}=\widehat{CMH}\)(hai góc đối đỉnh)

MD=MH(gt)

Do đó: ΔAMD=ΔCMH(c-g-c)

Suy ra: AD=HC(Hai cạnh tương ứng)

c) Ta có: ΔAMD=ΔCMH(cmt)

nên \(\widehat{MAD}=\widehat{MCH}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//HC(Dấu hiệu nhận biết hai đường thẳng song song)

hay AD//HB

Xét tứ giác ABHD có 

AD//BH(cmt)

AD=BH(=HC)

Do đó: ABHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AB//DH(Hai cạnh đối)

a: Xet ΔABH và ΔACH có

AB=AC

BH=CH

AH chung

=>ΔABH=ΔACH

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

b: góc DAH=góc CAH=góc DHA
=>ΔDAH cân tại D