K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

a) tam giác ABC cân tại A 
=> AH là đường cao đồng thời cũng là đường trung tuyến
Suy ra: H là trung điểm của BC 
BH = BC/2 = 3cm 
Áp dụng định lý Py ta go ta có: AH = căn (AB^2 - BH^2) = 4cm 

b)Ta có: G là trọng tâm của tam giác ABC nên G thuộc giao của ba đường trung tuyến của tam giác 
Suy ra: G thuộc đường trung tuyến kẻ từ A 
Mà ở câu a, AH còn là đường trung tuyến nên G thuộc AH 
Vậy: A,G,H thẳng hàng 

c)Tam giác ABC cân tại A, có AH là đường cao nên còn là đường phân giác 
Suy ra: góc BAG = góc CAG 
Xét tam giác ABG và tam giác ACG có: 
AB = AC (tam giác ABC cân tại A) 
góc BAG = góc CAG (cm trên) 
AG chung 
Vậy tam giác ABG = tam giác ACG (c-g-c) 
Suy ra: góc ABG = góc ACGhình tự vẽ

3 tháng 5 2021

a) △ABC cân tại A có AH là đường cao

⇒ AH là đường trung tuyến

\(\Rightarrow BH=\dfrac{1}{2}BC=\dfrac{1}{2}.6=3\left(cm\right)\)

△AHB vuông tại H có \(AB^2=AH^2+HB^2\\ \Rightarrow AH=\sqrt{AB^2-HB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

b) △ABC có AH là đường trung tuyến

G là trọng tâm

\(\Rightarrow G\in AH\) hay A; G; H thẳng hàng

c) △ABC cân tại A có AH là đường cao

⇒ AH là đường phân giác

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

△ABG và △ACG có:

\(AB=AC\\ \widehat{BAG}=\widehat{CAG}\\ AG:\text{cạnh chung}\)

\(\Rightarrow\text{△ABG = △ACG}\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABG}=\widehat{ACG}\)

24 tháng 4 2018

A B C H G

a, Xét tam giác ABH và tam giác ACH vuông tại H có:   +, AB = AC ( vì tam giác ABC cân tại A)

                                                                                     +, AH chung

=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm

b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng

c, Vì  tam giác ABH = tam giác ACH => góc BAH = góc CAH

Xét tam giác ABG và tam giác ACG có 

AB = AC ( vì tam giác ABC cân tại A )

góc BAH = góc CAH ( chứng minh trên)

AG chung

=>tam giác ABG = tam giác ACG(c.g.c)

=> góc ABG = góc ACG

24 tháng 4 2018

a)

Ta có tam giác ABC cân tại A ( gt )

Mà AH là đường cao 

Nên AH cũng là đường trung tuyến của tam giác ABC => H là trung điểm BC

=> BH = CH = BC / 2 = 6 / 2 = 3 cm

Xét tam giác AHB vuông tại H 

Ta có : AB= AH2 + BH( Py-ta-go )

            52   = AH2 + 32

=> AH2 = 16

=> AH = 4 cm

b)

Ta có G là trọng tâm của tam giác ABC ( gt )

=> AG là đường trung tuyến ứng với cạnh BC trong tam giác ABC 

mà AH cũng là đường trung tuyến ứng với cạnh BC trong tam giác ABC ( chứng minh ở câu a )

=> A,G,H thẳng hàng

c)

gọi CG cắt AB tại E ; BG cắt BC tại F

vì G là trọng tâm => CE ; BF là đường trung tuyến 

=> E là trung điềm AB ; F là trung điểm AC

Ta có EA = BA / 2 = 5 / 2 = 2,5 cm

AF = AC / 2 = 5 / 2 = 2,5 cm

Xét tam giác AEC và tam giác AFB 

ta có : AE = AF = 2,5

          góc BAC chung 

          AC = AB = 5

Nên 2 tam giác = nhau ( c-g-c )

=> góc ABG = góc ACG ( tương ứng )

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường trung tuyến

=>H là trung điểm của BC

=>HB=HC=3cm

=>AH=4cm

b: Ta có: AH là đường trung tuyến

mà AG là đường trung tuyến

và AH,AG có điểm chung là A

nên A,H,G thẳng hàng

c: Xét ΔABG và ΔACG có

AB=AC
\(\widehat{BAG}=\widehat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

16 tháng 6 2018

BH=3cm

AH=4cm

4 tháng 5 2019

a)Xét tam giácABC có AH là đường cao

=>AH là trung tuyến tam giác ABC(t/c tam giác cân)

=>BH=HC=\(\frac{BC}{2}\)=\(\frac{6}{2}\)=3(cm)

Xét tam giác ABH có góc H= 90 độ900:

=>AB2 =AH2 +BH2 (định lí Py-ta-go)

52 =AH2+32

52 -32 =AH2

25-9=AH2

16=AH2

4=AH2

=>AH=4(cm)

4 tháng 5 2019

chỗ phần 52,32 , AH2 ,...là 52 , 32, AH2,..nhé bn