Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D
a)Xét \(\Delta ABCvà\Delta ACD\),ta có:
AB=AC(gt)
BAD=CDA(gt)
AD:chung
=>\(\Delta ABC=\Delta ACD\)(c,g.c)
Theo bài ra ta có AD//EH vậy từ đây suy ra gócADE=gócDEH (1)
Vì tam giácDEC cân => gocs EDC= gocsC= góc B (2)
Ta có: B+BAD=90 độ
EDC+DEH=90 độ
Vậy từ đây suy ra BAD=DEH.
Mà BAD=DAE(gt) và ADE=DEH (1)
Vậy từ đây suy ra DAE=ADE vậy từ đây suy ra tam giác ADE cân tại A vậy suy ra AE=DỄ mà DỄ=ẸC vậy suy ra AE=EC vậy suy ra E là trung điểm của AC
Vậy suy ra 3 điểm B,G,E thẳng hàng.
Còn cái AD>BD thì mình giải sau nhé. Không còn thời gian rồi
a) Xét ΔABD và ΔACD có:
AD chung
góc ABD=góc ACD ( do AD là phân giác của góc BAC)
AB=AC ( ΔABC cân tại A)
Do đó:ΔABD=ΔACD (c-g-c) (đpcm)
Ta có:
AD vuông góc BC(tính chất Δ vuông)
EH vuông góc BC (theo đầu bài)
=>AD//EH (cùng vuông góc với BC)
=>góc ADE=góc DEH (2 góc so le trong)
Lại có:ΔDEC cân theo câu c:
=>góc EDC=góc ECD
mà góc ECD=góc ABD (ΔABC cân tại A)
=>góc EDC=góc ABD.
Xét ΔBAD có: góc ABD + góc BAD=90 độ (do ΔBAD vuông tại D)
và ΔDEH có: góc EDH + góc DEH =90 độ (do ΔDEH vuông tại H)
=> góc BAD=góc DEH
Mà góc BAD=góc DAE (AD là phân giác của góc A)
góc ADE=góc DEH (2 góc so le trong)
=>góc DAE=góc ADE
=>ΔAED cân tại E
=>DE=AE
mà DE=EC (ΔDEC cân tại E)
=>AE=EC
=>E là trung điểm của AC
=>3 điểm B,G,E thẳng hàng (đpcm)
a: XétΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
DO đó: ΔABD=ΔACD
b: XétΔABC có
AD là đường trung tuyến
CF là đường trung tuyến
AD cắt CF tại G
Do đó: G là trọng tâm của ΔABC
a) Xét ΔABD và ΔACD có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
b) Ta có: ΔABD=ΔACD(cmt)
nên DB=DC(hai cạnh tương ứng)
mà B,D,C thẳng hàng(gt)
nên D là trung điểm của BC
Xét ΔABC có
AD là đường trung tuyến ứng với cạnh BC(cmt)
CF là đường trung tuyến ứng với cạnh AB(gt)
AD cắt CF tại G(gt)
Do đó: G là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)