K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2020

undefined

a) Xét \(\Delta ABD\)\(\Delta ACE\) có:

\(\widehat{ADB}=\widehat{AEC}=90^0\) (gt)

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{A}\) chung

\(\Rightarrow\Delta ABD=\widehat{ACE}\) (cạnh huyền - góc nhọn)

\(\Rightarrow AD=AE\) (hai cạnh tương ứng)

b) Xét \(\Delta AEI\)\(\Delta ADI\) có:

\(AI\) là cạnh chung

AE = AD (cmt)

\(\widehat{AEI}=\widehat{ADI}=90^0\)

\(\Rightarrow\Delta AEI=\Delta ADI\) (cạnh huyền - góc nhọn)

\(\Rightarrow\widehat{EAI}=\widehat{DAI}\) (hai góc tương ứng)

\(\Rightarrow\) \(AI\) là tia phân giác của \(\widehat{DAE}\)

Hay \(AI\) là tia phân giác của \(\widehat{BAC}\)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có

AI chung

AD=AE

=>ΔADI=ΔAEI

=>góc DAI=góc EAI

=>AI là phân giác của góc DAE

22 tháng 1 2021

Vì tam giác ABC cân tại A (gt)

suy ra: góc ABC = góc ACB

hay góc EBC = góc DCB

Xét tam giác EBC và tam giác DCB có

góc BEC = góc CDB ( =90)

góc EBC = góc DCB (CMT)

BC chung

Suy ra tam giác EBC = tam giác DCB (ch-gn)

suy ra BE=CD (cctu)

22 tháng 1 2021

 Xét tg ABC có:

+ BD là đườg cao (BD vuông góc AC)

+ CE là đg cao (CE vuông góc AB)

Mà BD giao CE tại I (gt)

=> I là trực tâm

=> AI là đường cao

Xét tg ABC cân tai A có: AI là đường cao (cmt)

=> AI cũng là đường pg góc BAC ( Tc tg cân)

 

22 tháng 1 2021

a) 

Vì tam giác ABC cân tại A (gt)

suy ra: góc ABC = góc ACB

hay góc EBC = góc DCB

Xét tam giác EBC và tam giác DCB có

góc BEC = góc CDB ( =90)

góc EBC = góc DCB (CMT)

BC chung

Suy ra tam giác EBC = tam giác DCB (ch-gn)

suy ra BE=CD (cctu)

b) Xét tg ABC có:

+ BD là đườg cao (BD vuông góc AC)

+ CE là đg cao (CE vuông góc AB)

Mà BD giao CE tại I (gt)

=> I là trực tâm

=> AI là đường cao

Xét tg ABC cân tai A có: AI là đường cao (cmt)

=> AI cũng là đường pg góc BAC ( Tc tg cân)

22 tháng 1 2021

Bruhundefined

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔAED có AE=AD

nên ΔAED cân tại A

c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có 

EB=DC

\(\widehat{EBI}=\widehat{DCI}\)

Do đó; ΔEBI=ΔDCI

Suy ra: IB=IC

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

26 tháng 1 2022

Mình cảm ơn cậu nhé

26 tháng 1 2016

Trang chelsea chht là sao

26 tháng 1 2016

xin lỗi em mới học lớp 6

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó:ΔABD=ΔACE

b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có

AI chung

AD=AE

Do đó: ΔADI=ΔAEI

Suy ra: \(\widehat{DAI}=\widehat{EAI}\)

hay AI là tia phân giác của góc BAC

c: Xét ΔADE có AD=AE
nên ΔADE cân tại A

a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)

góc A chung

Do đó tg AEC = tg ADB (ch - gn)

=> BD = CE (đpcm)

b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)

CE = BD (Cmt)

do đó tg CEB = tg BDC (cgv - gnk)

=> góc ECB = góc DBC

=> tam giác BIC cân tại I (đpcm)

c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)

AI chung

BI = IC (tam giác BIC cân (Cmt))

DO đó tg AIC = tg AIB (c.c.c)

=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)

d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A

Mà AI là tia pg của góc EAD nên AI vuông với DE(1)

Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)

Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)

e) ko bt

F) cm vuông như câu d nha