Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
Suy ra: \(\widehat{ABN}=\widehat{ACM}\)
Hình bạn tự vẽ nhé.
a. Vì AD là tia phân giác của \(\widehat{BAC}\) (gt)
nên \(\widehat{BAD}=\widehat{CAD}\)
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
AD là cạnh chung
\(\widehat{BAD}=\widehat{CAD}\) (chứng minh trên)
AB = AC
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\) (đpcm)
b. Gọi giao điểm của MN và AD là S
Ta có: \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widehat{MAS}=\widehat{NAS}\)
Xét \(\Delta AMS\) và \(\Delta ANS\) có:
AS là cạnh chung
\(\widehat{MAS}=\widehat{NAS}\) (chứng minh trên)
AM = AN (gt)
\(\Rightarrow\Delta AMS=\Delta ANS\left(c.g.c\right)\)
\(\Rightarrow\widehat{ASN}=\widehat{ASM}\) (2 góc tương ứng)
Mà \(\widehat{ASN}+\widehat{ASM}=180^o\) (2 góc kề bù)
\(\Rightarrow\widehat{ASN}=\widehat{ASM}=\dfrac{180^o}{2}=90^o\)
\(\Rightarrow AS\perp MN\)
hay \(AD\perp MN\) (đpcm)
c. Ta có: AM = AN (gt)
\(\Rightarrow\Delta AMN\) cân tại A (dấu hiệu nhận biết)
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{MAN}}{2}\) (định lí)
hay \(\widehat{AMN}=\dfrac{180^o-\widehat{BAC}}{2}\) (1)
Lại có: AB = AC (gt)
\(\Rightarrow\Delta ABC\) cân tại A (dấu hiệu nhận biết)
\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{BAC}}{2}\) (định lí) (2)
Từ (1), (2)
\(\Rightarrow\widehat{AMN}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị
\(\Rightarrow\) MN // BC (dấu hiệu nhận biết) (*)
Xét \(\Delta MOP\) và \(\Delta BDO\) có:
MO = BO (vì O là trung điểm của BM)
\(\widehat{MOP}=\widehat{BOD}\) (2 góc đối đỉnh)
OD = PO (gt)
\(\Rightarrow\Delta MOP=\Delta BOD\left(c.g.c\right)\)
\(\Rightarrow\widehat{MOP}=\widehat{BDO}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\) MP // BC (dấu hiệu nhận biết) (**)
Từ (*), (**)
\(\Rightarrow\) Qua điểm M ở ngoài đường thẳng BC, ta vừa có MN // BC, MP // BC (trái với tiên đề Ơ-clit)
\(\Rightarrow\) 3 điểm P, M, N thẳng hàng (đpcm)
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Ta có: ΔABC=ΔADE
nên BC=DE(1)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=BC/2(2)
Ta có: ΔADE vuông tại A
mà AN là đường trung tuyến
nên AN=DE/2(3)
Từ (1), (2) và (3) suy ra AM=AN
Bài 1 :
Xét \(\Delta ABC\)có AB = AC (gt)
=> \(\Delta ABC\)cân tại A
=> \(\widehat{B}=\widehat{C}\)
MÀ \(\widehat{C}=\)70
=> \(\widehat{B}=\)70
Xét \(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{A}+70^0+70^o=180^o\)
=> \(\widehat{A}=180^0-140^o=40^0\)
Vậy \(\widehat{A}=40^0;\widehat{B}=70^0\)
Bạn tìm bài này theo đường link này nha!
https://olm.vn/hoi-dap/question/36403.html
chúc bạn may mắn
Trả lời:
Tam giác AIM = tam giác CIM ( ch-chg)
nên MA=MC. tam giác AMC cân tại đỉnh M. Tam giác MAC và tam giác ABC là tam giác cân lại có chung gióc C nên góc ở đỉnh của chúng bằng nhau
Vậy góc AMC = góc BAC.
Ta có : ABMˆ+ABCˆ=180ABM^+ABC^=180 và CANˆ+CAMˆ=180CAN^+CAM^=180 ( vì cùng kề bù)
do đó: góc ABM = góc CAM.
Vậy tam giác ABM= tam giác CAN (c.g.c)
=> CN=AM mà AM=CM nên suy ra CM=CN. Tam giác MCN cân tại C
Tam giác ABC cân tại A có góc BAC =45
=> ACBˆ=180−452=67o30′ACB^=180−452=67o30′
Mà ACBˆ=MACˆACB^=MAC^ nên MABˆ=67o30′
Khi đó MABˆ=MACˆ−BACˆ=67o30′−450=22o30′MAB^=MAC^−BAC^=67o30′−450=22o30′
⇒ACNˆ=22030′⇒ACN^=22o30′
MCNˆ=MCAˆ+ACMˆ=67030′+22o30′=90oMCN^=MCA^+ACM^=67o30′+22o30′=90o
\(\Rightarrow\)Tam giác CMN vuông cân ở C
~Học tốt!~