Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh AH là đường trung bình của tam giác BCD
b, Sử dụng hệ thức giữa đường cao và các cạnh góc vuông trong tam giác vuông BCD và áp dụng câu a)
a)) Xét tam giác ABC cân tại A có AH là đường cao => AH cũng là đường trung tuyến
=> BH = HC
Xét tam giác BCD có: AH // BD (vì cùng vuông góc với BC) và H là trung điểm của BC
=> AH là đường trung bình ==> \(AH=\frac{1}{2}BD\)=> BD = 2AH
b) Xét tam giác BCD vuông tịa B có BK là đường cao
=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\) (hệ thức lượng trong tam giác vuông)
=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{\left(2AH\right)^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
a) Do AH là đường cao trong tam giác ABC cân tại A
\(\Rightarrow\) AH cũng là đường trung tuyến trong tam giác ABC
Suy ra H là trung điểm của BC.
mà AH//BD (vì cùng vuông góc với BC)
\(\Rightarrow\) AH là đường trung bình của tam giác DBC
\(\Rightarrow\) 2AH=BD
b)Áp dụng hệ thức trong tam giác vuông có
\(\dfrac{1}{BK^2}=\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{1}{\left(2AH\right)^2}+\dfrac{1}{BC^2}\) \(=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
Vậy...
a: BC=BH+CH
=4+9
=13(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=4\cdot9=36\)
=>\(AH=\sqrt{36}=6\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(AB^2=4\cdot13=52\)
=>\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)
b:
CK//AB
CA\(\perp\)AB
Do đó: CK\(\perp\)CA tại C
Xét ΔACK vuông tại C có CH là đường cao
nên \(HA\cdot HK=CH^2\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(CH\cdot HB=HA^2\)
Xét ΔAHC vuông tại H có \(AC^2=CH^2+HA^2\)
=>\(AC^2=HA\cdot HK+CH\cdot HB\)
c: Gọi M là trung điểm của BC
Ta có: ΔABC vuông tại A
=>ΔABC nội tiếp đường tròn đường kính BC
=>ΔABC nội tiếp (M)
Xét tứ giác BAEF có
\(\widehat{BFE}+\widehat{BAE}=90^0+90^0=180^0\)
Do đó: BAEF là tứ giác nội tiếp
=>\(\widehat{BAF}=\widehat{BEF}\)(1)
Ta có: AH\(\perp\)BC
EF\(\perp\)BC
Do đó: AH//EF
=>AD//EF
=>\(\widehat{ADB}=\widehat{BEF}\)(hai góc so le trong)(2)
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
=>CA=CD
Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
=>\(\widehat{BAD}=\widehat{BDA}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{BAD}=\widehat{BAF}\)
mà \(\widehat{BAD}=\widehat{ACB}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{BAF}=\widehat{ACB}\)
Ta có: MA=MB
=>ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{MBA}\)
=>\(\widehat{MAB}=\widehat{ABC}\)
Ta có: \(\widehat{MAF}=\widehat{MAB}+\widehat{BAF}\)
\(=\widehat{ABC}+\widehat{ACB}\)
\(=90^0\)
=>MA\(\perp\)FA tại A
Xét (M) có
MA là bán kính
FA\(\perp\)MA tại A
Do đó: FA là tiếp tuyến của (M)
hay FA là tiếp tuyến của đường tròn đường kính BC