K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc OAD+góc OMD=180 độ

=>OADM nội tiếp

b: ΔOBC cân tại O

mà ON là đường cao

nên ONlà trung trực của BC

=>sđ cung NB=sd cung NC

=>góc BAN=góc CAN

=>AN là phân giác của góc BAC

góc DAI=1/2*sđ cung AN

góc DIA=1/2(sđ cung AB+sđ cung NC)

=1/2(sđ cung AB+sđ cung NB)

=1/2*sđ cung AN

=>góc DAI=góc DIA

=>ΔDAI cân tại D

tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp

==> 4 điểm B,E,F,C cùng thuộc một đường tròn.

20 tháng 3 2019

1. (HD) Theo t/c hai tiếp tuyến cắt nhau ta có AD = AF => tam giác ADF cân tại A => ÐADF = ÐAFD < 900 => sđ cung DF < 1800 => ÐDEF < 900 ( vì góc DEF nội tiếp chắn cung DE).

Chứng minh tương tự ta có ÐDFE < 900; ÐEDF < 900. Như vậy tam giác DEF có ba góc nhọn.

2. Ta có AB = AC (gt); AD = AF (theo trên) => => DF // BC.

3. DF // BC => BDFC là hình thang lại có Ð B = ÐC (vì tam giác ABC cân)

=> BDFC là hình thang cân do đó BDFC nội tiếp được một đường tròn .

4. Xét hai tam giác BDM và CBF Ta có Ð DBM = ÐBCF ( hai góc đáy của tam giác cân).

ÐBDM = ÐBFD (nội tiếp cùng chắn cung DI); Ð CBF = ÐBFD (vì so le) => ÐBDM = ÐCBF .

=> DBDM ~DCBF =>

20 tháng 3 2019

Tứ giác nội tiếp

a) Đường tròn $(O)$ tiếp xúc với \(AB.BC,CA\) tại $D,E,F$, tức là $O$ là giao của ba đường phân giác tam giác $ABC$ và \(OD\perp AB, OF\perp AC, OE\perp BC\)

Do đó: \(\widehat{ODA}+\widehat{OFA}=90^0+90^0=180^0\)

\(\Rightarrow ODAF\) là tứ giác nội tiếp.

Hoàn toàn tương tự: \(ODBE, OECF\) nội tiếp.

Từ các tứ giác nội tiếp suy ra:

\(\left\{\begin{matrix} \widehat{ODF}=\widehat{OAF}=\frac{\widehat{A}}{2}\\ \widehat{ODE}=\widehat{OBE}=\frac{\widehat{B}}{2}\end{matrix}\right.\) \(\Rightarrow \widehat{ODF}+\widehat{ODE}=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}\)

hay \(\widehat{EDF}=\frac{\widehat{A}+\widehat{B}}{2}\)

Tương tự: \(\widehat{DEF}=\frac{\widehat{B}+\widehat{C}}{2}\) và \(\widehat{EFD}=\frac{\widehat{A}+\widehat{C}}{2}\)

Vì $ABC$ là tam giác nhọn nên các góc đều nhỏ hơn $90^0$

\(\Rightarrow \widehat{EDF}, \widehat{DEF}, \widehat{EFD}< 90^0\)

\(\Rightarrow \triangle DEF\) có 3 góc nhọn.

b)

Vì tam giác $ABC$ cân tại $A$ nên \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow \widehat{ABC}=\frac{180-\widehat{BAC}}{2}=90^0-\frac{\widehat{A}}{2}\)

Tứ giác $ODAF$ nội tiếp \(\Rightarrow \widehat{ADF}=\widehat{AOF}=90^0-\widehat{OAF}=90^0-\frac{\widehat{A}}{2}\)

Do đó: \(\widehat{ABC}=\widehat{ADF}\), hai góc này ở vị trí đồng vị nên \(DF\parallel BC\)

c)

\(\left\{\begin{matrix} \widehat{ABC}=\widehat{ACB}\\ \widehat{ABC}=\widehat{ADF}(\text{theo phần b})\end{matrix}\right.\) \(\Rightarrow \widehat{ADF}=\widehat{ACB}=\widehat{FCB}\)

\(\Rightarrow BDFC\) nội tiếp.

d)

$BD$ là tiếp tuyến của $(O)$ nên \(\widehat{BDM}=\widehat{DFI}=\widehat{DFB}\) (cùng chắn cung DI)

Mà do $BDFC$ nội tiếp nên \(\widehat{DFB}=\widehat{DCB}\)

Từ đây suy ra \(\widehat{BDM}=\widehat{DCB}\)

Xét tam giác $BDM$ và $BCD$ có:

\(\left\{\begin{matrix} \angle \text{B Chung}\\ \widehat{BDM}=\widehat{BCD}(cmt)\end{matrix}\right.\Rightarrow \triangle BDM\sim \triangle BCD(g.g)\)

\(\Rightarrow \frac{BD}{BC}=\frac{BM}{BD}(1)\)

Do \(DF\parallel BC\Rightarrow \frac{BD}{AB}=\frac{CF}{AC}\) (theo định lý Ta -let) mà \(AB=AC\Rightarrow BD=CF(2)\)

Từ \((1); (2)\Rightarrow \frac{BD}{BC}=\frac{BM}{CF}\) (đpcm)