K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2022

a, Ta có 

\(BC^2=AB^2+AC^2\Rightarrow25=16+9\)( luôn đúng ) 

Vậy tam giác ABC vuông tại A

b, Xét tam giác BCD có 

BA là đường cao 

lại có AD = AC => A là trung điểm 

=> BA là đường trung tuyến 

Vậy tam giác BCD cân tại B 

7 tháng 3 2022

a. Ta có:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow5^2=3^2+4^2\)

\(\Leftrightarrow25=25\left(đúng\right)\)
\(\Rightarrow\) Tam giác ABC vuông tại A

b.Xét tam giác CBA và tam giác DAB, có:

AD = AC ( gt )

góc BAC = góc DAB ( = 90 độ )

AB: cạnh chung

Vậy tam giác CBA = tam giác DAB ( c.g.c )

=> góc BCA = góc BDA ( 2 góc tương ứng )

=> Tam giác BCD cân tại B

a)Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\) (ĐL Pytago)

\(5^2=3^2+AC^2\)

25=9+\(AC^2\)

25-9=\(AC^2\)

\(AC^2\)=16

Vậy...

b)góc BAC=góc DAC(2 góc này ở vị trì kề bù)

Xét tam giác BAC  và tam giác DAC có:

BC=AD(gt)

góc BAC=góc DAC(cmt =90độ )

AC cạnh chung

\(\Rightarrow\Delta ABC=\Delta ADC\)(2 cgv)

\(\Rightarrow BC=DC\)(..)(1)

và góc B= góc D(...)(2)

Từ (1) và(2)có tam giác BCD cân tại C

 

a: BC=căn 8^2+6^2=10cm

b: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

=>CB=CD

Xét ΔCDE và ΔCBE có

CD=CB

góc DCE=góc BCE

CE chung

=>ΔCDE=ΔCBE

c: ΔCBD có CB=CD nên ΔCBD cân tại C

17 tháng 3 2017

a) Chứng minh được tam giác ABC = tam giác A.BD (c-g-c), từ đó suy ra được tam giác BCD đều

b) Dùng kết quả câu a, ta có BC = CD = 2AC

17 tháng 12 2019

27 tháng 12 2015

Bạn tự vẽ hình nhé

Vì tam giác ABC cân tại A

=>AB=AC, góc ABC= góc ACB(1)

Vì AD=AC

mà AB=AC

=>AB=AD

Xét tam giác ABD có: AB=AD

=>Tam giác ABC cân tại A

=>góc ABD=góc ADB(2)

Từ (1) và (2)

=>góc ABC= góc ACB, góc ABD=góc ADB

=>góc ABC+góc ABD=góc ACB+góc ADB

=>góc DAC= góc ACD+góc ADC

Xét tam giác DAC có:

góc DAC+góc ACD+góc ADC=180 độ

mà góc DAC= góc ACD+góc ADC

=>góc DAC+góc DAC=180 độ

=>2.góc DAC=180 độ

=>góc DAC=90 độ

=>Tam giác BCD vuông tại B

=>ĐPCM