K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

K A B C H I

a) Dễ dàng c/m được tam giác HIC đồng dạng với tam giác AHC (g.g)

=> \(\frac{HC}{AC}=\frac{IC}{HC}\Rightarrow IC=\frac{HC^2}{AC}=\frac{\left(\frac{BC}{2}\right)^2}{AC}\) . Bạn thay số vào tính.

b) Dễ dàng c/m được HI là đường trung bình tam giác BKC => I nằm giữa K và C

Lại có I nằm giữa AC => K nằm giữa A và C

16 tháng 8 2016

a) \(IC=\frac{HC^2}{AC}=\frac{6^2}{9}=4\) (cm)

b) \(\Delta ABC\) cân tại điểm A.

\(\Rightarrow\widehat{B}=\widehat{C}\) là góc nhọn

=> A nằm trên mặt phẳng chứa A bờ BC.

\(\Rightarrow\Delta AHC\approx\Delta BKC\)

\(\Rightarrow\frac{AC}{BC}=\frac{HC}{KC}\)

\(\Rightarrow KC=\frac{12.6}{9}=8< 9\)

Vậy K nằm giữa A và C

20 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH=\dfrac{12\cdot9}{15}=7.2\left(cm\right)\)

b: ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot IB=HI^2\)

ΔAHC vuông tại H có HK là đường cao

nên \(AK\cdot KC=HK^2\)

Xét tứ giác AIHK có 

\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)

=>AIHK là hình chữ nhật

=>\(HI^2+HK^2=IK^2=AH^2\)

=>\(AI\cdot IB+AK\cdot KC=AH^2=7.2^2=51.84\)

c: Vì AIHK là hình chữ nhật

nên A,I,H,K cùng thuộc đường tròn đường kính AH

27 tháng 10 2021

a: CH=8-2=6(cm)

\(AB=\sqrt{BH\cdot BC}=4\left(cm\right)\)

\(AC=4\sqrt{3}\left(cm\right)\)

\(AH=4\cdot\dfrac{4\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\)

a: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b: Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=NM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\)

hay AH=6(cm)

mà AH=NM

nên MN=6cm

10 tháng 12 2021

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\left(1\right)\)

Xét ΔABK vuông tại A có AD là đường cao

nên \(BD\cdot BK=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=BD\cdot BK\)