Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>K là trung điểm của BC
Xét ΔBNC co
K là trung điểm của BC
KD//NC
=>D là trung điểm của NB
Xét ΔBMC có
K làtrung điểm của CB
KE//BM
=>E là trung điểm của MC
BD=1/2BN=1/4AB
=>AD=3/4AB
CE=1/2CM=1/4AB
=>AE=3/4AC
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Xét ΔABK có DI//BK
nên DI/BK=AI/AK
Xét ΔACK có IE//KC
nên IE/KC=AI/AK
=>DI/BK=IE/KC
=>DI=IE
=>I là trung điểm của DE
-Bài khó.
-Bài này mình xem cách giải của bài khá tương đồng với bài này (do GV mình giải).
-OI cắt AC tại E, AD cắt CM tại F, qua M kẻ đường thẳng song song với AC cắt BN tại G.
\(\dfrac{AN}{NC}=\dfrac{AN}{MG}.\dfrac{MG}{NC}=\dfrac{AB}{BM}.\dfrac{OM}{OC}\)
\(\Rightarrow\dfrac{OM}{OC}=\dfrac{BM}{AB}.\dfrac{AN}{NC}=\dfrac{NC}{AB}.\dfrac{AN}{NC}=\dfrac{AN}{AB}\)
\(\Rightarrow\dfrac{CM}{OC}=\dfrac{AN+AB}{AB}\Rightarrow\dfrac{OC}{CM}=\dfrac{AB}{AN+AB}\)
\(\dfrac{MF}{CF}=\dfrac{AM}{AC}\Rightarrow\dfrac{CM}{CF}=\dfrac{AM+AC}{AC}=\dfrac{AB-BM+AN+NC}{AC}=\dfrac{AB+AN}{AC}\)
\(\Rightarrow\dfrac{OC}{CM}.\dfrac{CM}{CF}=\dfrac{AB}{AN+AB}.\dfrac{AN+AB}{AC}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{OC}{CF}=\dfrac{AB}{AC}\Rightarrow\dfrac{CE}{AC}=\dfrac{AB}{AC}\Rightarrow CE=AB\)
\(\dfrac{IC}{DC}=\dfrac{CE}{AC}=\dfrac{AB}{AC}=\dfrac{AD}{DC}\Rightarrow IC=AD\)
\(\Rightarrow IC+ID=BD+ID\Rightarrow CD=BI\)