K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

a: Xét ΔABC có 

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có

H là trung điểm của GB

K là trung điểm của GC

Do đó: HK là đường trung bình của ΔGBC

Suy ra: HK//BC và \(HK=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra NM//HK và NM=HK

hay NMKH là hình bình hành

a: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(MN=\dfrac{BC}{2}=5\left(cm\right)\)

12 tháng 11 2016

Bạn tự vẽ hình nhé

a) Ta có: \(IN=\frac{1}{3}NC\)

\(IC=\frac{2}{3}NC\Leftrightarrow IK=\frac{IC}{2}=\frac{2}{3}NC\cdot\frac{1}{2}=\frac{1}{3}NC\)

\(\Rightarrow IN=IK\)(1)

Mặt khác \(IM=\frac{1}{3}BM\)

\(IB=\frac{2}{3}BM\Leftrightarrow HI=\frac{IB}{2}=\frac{2}{3}BM\cdot\frac{1}{2}=\frac{1}{3}BM\)

\(\Rightarrow IM=IH\)(2)

Từ (1) và (2) =>  tứ giác MNHK là hbh.   (3)

b) Từ (3) => Nếu BM_|_ CN thì tứ giác MNHK là hình thoi   (4)

c) Để  MNHK là hcn thì NK = HM hay IN = IM <=>  NC=BM <=>  tam giác ABC cân tại A

d) Từ (4) và c) => Để MNHK là hình vuông thì tam giác ABC cân tại A và BM _|_ CN

9 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình bình hành DEHK trở thành hình chữ nhật khi DH = EK

Mà DH = 2/3 BD; EK = 2/3 CE

Nên DH = EK ⇒ BD = CE

⇒ ∆ ABC cân tại A.

Vậy  ∆ ABC cân tại A thì tứ giác DEHK là hình chữ nhật.

12 tháng 12 2021

\(a,\) Vì E,D là trung điểm AB,AC nên ED là đường trung bình tam giác ABC

Do đó \(ED//BC;ED=\dfrac{1}{2}BC(1)\)

Vì H,K là trung điểm GB,GC nên HK là đường trung bình tam giác BGC

Do đó \(HK//BC;HK=\dfrac{1}{2}BC(2)\)

Từ \((1)(2)\Rightarrow HK//ED;HK=ED\)

Vậy DEHK là hình bình hành

\(b,\Delta ABC\) cân tại A nên \(AB=AC\Rightarrow \dfrac{1}{2}AB=\dfrac{1}{2}AC\)

\(\Rightarrow AE=EB=AD=DC\)

Ta có \(AB=AC;AE=AD;\widehat{BAC}\) chung

\(\Rightarrow \Delta ADB=\Delta AEC(c.g.c)\\ \Rightarrow BD=EC\)

Lại có G là trọng tâm tam giác ABC nên \(CK=KG=GE=\dfrac{1}{3}CE\)

\(BH=HG=GD=\dfrac{1}{3}BD\)

Do đó \(KG+GE=HG+GD(\dfrac{2}{3}BD=\dfrac{2}{3}CE)\)

\(\Rightarrow EK=HD\)

Vậy DEHK là hình chữ nhật