K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 11 2019

Gọi \(M\left(x;0\right)\Rightarrow\overrightarrow{MA}\left(2-x;5\right)\) ; \(\overrightarrow{MB}=\left(-1-x;8\right)\); \(\overrightarrow{MC}=\left(4-x;-3\right)\)

a/ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(5-3x;10\right)\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\sqrt{\left(5-3x\right)^2+10^2}\ge10\)

\(T_{min}=10\) khi \(5-3x=0\Rightarrow x=\frac{5}{3}\Rightarrow M\left(\frac{5}{3};0\right)\)

b/ \(2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}=\left(17-4x;-7\right)\)

\(\Rightarrow A=\left|2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}\right|=\sqrt{\left(17-4x\right)^2+\left(-7\right)^2}\ge7\)

\(A_{min}=7\) khi \(17-4x=0\Rightarrow x=\frac{17}{4}\Rightarrow M\left(\frac{17}{4};0\right)\)

NV
23 tháng 12 2022

a.

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(=\left|3\overrightarrow{MG}\right|=3\left|\overrightarrow{MG}\right|\)

\(\Rightarrow T_{min}\) khi và chỉ khi \(MG_{min}\Rightarrow MG=0\) hay M trùng G

Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_M=\dfrac{2-1+6}{3}=\dfrac{7}{3}\\y_M=\dfrac{3-1+0}{3}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{7}{3};\dfrac{2}{3}\right)\)

b.

Tương tự câu a, ta có \(T=3\left|\overrightarrow{MG}\right|\) đạt min  khi MG đạt min

\(\Rightarrow\) M là hình chiếu vuông góc của G lên Ox

Mà \(G\left(\dfrac{7}{3};\dfrac{2}{3}\right)\Rightarrow M\left(\dfrac{7}{3};0\right)\)

c.

Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(2-m;3\right)\\\overrightarrow{MB}=\left(-1-m;-1\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{u}=\left(3m+6;7\right)\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(3m+6\right)^2+7^2}\ge\sqrt{0+7^2}=7\)

Dấu "=" xảy ra khi \(3m+6=0\Rightarrow m=-2\)

\(\Rightarrow M\left(-2;0\right)\)

23 tháng 12 2022

<3 em cảm ơn "giáo viên"!

23 tháng 10 2018

a) gọi I là trung điểm của đoạn thẳng AB

=> IA+ IB=0

| 2MI|= |BA|

|MI|= 1/2|BA|

=> M thuộc đường tròn tâm I, bán kính =1/2 BA

23 tháng 10 2018

B) gọi G là trọng tâm của tam giác ABC

=> GA+ GB+ GC=0

gọi I là trung điểm của đoạn thẳng AB

=> IA+ IB=0

| 3MG|= 3/2| 2 MI|

3| MG|= 3| MI|

| MG|= | MI|

=> M thuộc đường trung trực của đoạn thẳng GI

5 tháng 8 2019

\(\text{a) }\left|2\overrightarrow{MA}+3\overrightarrow{MB}\right|=\left|3\overrightarrow{MB}-2\overrightarrow{MC}\right|\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}\right)^2=\left(3\overrightarrow{MB}-2\overrightarrow{MC}\right)^2\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}\right)^2-\left(3\overrightarrow{MB}-2\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}-3\overrightarrow{MB}+2\overrightarrow{MC}\right)\left(2\overrightarrow{MA}+3\overrightarrow{MB}+3\overrightarrow{MB}-2\overrightarrow{MC}\right)=0\\ \Rightarrow\left(2\overrightarrow{MA}+2\overrightarrow{MC}\right)\left[2\left(\overrightarrow{MA}-\overrightarrow{MC}\right)+6\overrightarrow{MB}\right]=0\\ \Rightarrow\left(\overrightarrow{MA}+\overrightarrow{MC}\right)\left(\overrightarrow{CA}+3\overrightarrow{MB}\right)=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MC}=0\\\overrightarrow{CA}+3\overrightarrow{MB}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}=-\overrightarrow{MC}\\\overrightarrow{CA}=-3\overrightarrow{MB}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}M;A;C\text{ thẳng hàng };M\text{ nằm giữa }A;C\\MA=MC\end{matrix}\right.\\\left\{{}\begin{matrix}CA//MB\\CA=3MB\end{matrix}\right.\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}M\text{ là trung điểm }AC\\CA//MB;CA=3MB\end{matrix}\right.\)

Vậy......

5 tháng 8 2019

\(b\text{) }\left|4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)^2=\left(2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)^2\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)^2-\left(2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}-2\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)=0\\ \Rightarrow\left(2\overrightarrow{MA}+2\overrightarrow{MB}+2\overrightarrow{MC}\right)\cdot6\overrightarrow{MA}=0\\ \Rightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}=0\\\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}M\equiv A\\M\text{ là trọng tâm }\Delta ABC\end{matrix}\right.\)Vậy...........

6 tháng 11 2020

d, Lấy P, Q sao cho \(4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0};2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}=\overrightarrow{0}\)

Ta có \(\left|4\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\text{ }\overrightarrow{MP}+4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}\right|=\left|4\overrightarrow{MP}\right|=4MP\)

\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|=\text{ }\left|2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}\right|=0\)

\(\Rightarrow4MP=0\Rightarrow M\equiv P\)

6 tháng 11 2020

Gọi G là trọng tâm tam giác, I là trung điểm BC, N là trung điểm của AC

a, Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\)

\(\Rightarrow MG=MI\Rightarrow M\) thuộc đường trung trực của BC

b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MN}\right|=2MN\)

\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA\)

\(\Rightarrow2MN=BA\Rightarrow M\in\left(N;\frac{BA}{2}\right)\)

8 tháng 12 2023

Gọi \(I\) là tâm tỉ cự của 3 điểm A, B, C ứng với bộ \(\left(1,4,1\right)\).

Khi đó: \(\overrightarrow{IA}+4\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\). Gọi Y là trung điểm AC thì \(4\overrightarrow{IB}+2\overrightarrow{IY}=\overrightarrow{0}\)  

\(\Leftrightarrow\overrightarrow{IY}=-2\overrightarrow{IB}\)

Từ đó dễ dàng xác định được vị trí của I là điểm nằm trên cạnh BY sao cho \(IY=2IB\)

 Gọi \(J\) là tâm tỉ cự của 3 điểm A, B, C ứng với bộ \(\left(9,-6,3\right)\). Khi đó \(9\overrightarrow{JA}-6\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)

\(\Leftrightarrow3\left(\overrightarrow{JA}+\overrightarrow{JC}\right)+6\left(\overrightarrow{JA}-\overrightarrow{JB}\right)=\overrightarrow{0}\)

\(\Leftrightarrow6\overrightarrow{JY}+6\overrightarrow{BA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{JY}=\overrightarrow{AB}\)

Vậy ta thấy J là điểm sao cho tứ giác ABYJ là hình hình hành.

Ta có \(\left|\overrightarrow{MA}+4\overrightarrow{MB}+\overrightarrow{MC}\right|+3\left|3\overrightarrow{MA}-2\overrightarrow{MB}+\overrightarrow{MC}\right|\)

\(=\left|\overrightarrow{MI}+\overrightarrow{IA}+4\left(\overrightarrow{MI}+\overrightarrow{IB}\right)+\overrightarrow{MI}+\overrightarrow{IC}\right|+\left|9\left(\overrightarrow{MJ}+\overrightarrow{JA}\right)-6\left(\overrightarrow{MJ}+\overrightarrow{JB}\right)+3\left(\overrightarrow{MJ}+\overrightarrow{JC}\right)\right|\)

\(=\left|6\overrightarrow{MI}\right|+\left|6\overrightarrow{MJ}\right|\)

\(=6\left(MI+MJ\right)\)

 Vậy ta cần tìm M để \(MI+MJ\) đạt GTNN. Ta thấy \(MI+MJ\ge IJ=const\). Dấu "=" xảy ra \(\Leftrightarrow\) M nằm trên đoạn thẳng IJ.

 

6 tháng 2 2020

một đường tròn