K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

Xét tam giác BEM và tam giác CFM có :

BM = MC ( gt )

Góc E = Góc F ( = 90độ )

Góc M1 = Góc M2 ( đối đính )

=> Tam giác BEM = tam giác CFM ( ch - gn )

=> BE = CF ( 2 cạnh tương ứng ) 

Vậy,..........

18 tháng 12 2022

a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có

BC chung

góc FBC=góc ECB

Do đó: ΔFBC=ΔECB

=>CF=EB

b: Xét ΔMBC có góc MBC=góc MCB

nên ΔMCB cân tại M

=>MB=MC

mà AB=AC

nên AM là trung trực của BC

A B C E F M D N

a) Vì \(\Delta ABC\) cân tại A nên AB = AC và Góc B = Góc C. Vì \(BE\perp AC;CF\perp AB\left(gt\right)\) 

Nên ^AFC = ^BFC = ^AEB = ^CEB = 900. Xét \(\Delta AFC\) và \(\Delta AEB\) có :

^AFC = ^AEB = 900\(AC=AB\left(cmt\right)\); Góc O chung. \(\Rightarrow\Delta AFC=\Delta AEB\left(ch.gn\right)\)

b) \(\Rightarrow AF=AE\) ( 2 cạnh tương ứng ). Có ^AFC = ^AEB hay ^AFD = ^AED = 900

Xét \(\Delta AED\) và  \(\Delta AFD\) có : ^AFD = ^AED = 90( cmt ) ; \(AF=AE\left(cmt\right);AD\)  chung

\(\Rightarrow\Delta AED=\Delta AFD\left(ch.cgv\right)\Rightarrow\) ^EAD = ^FAD ( tương ứng ) nên AD là phân giác ^FAE ( đpcm )

c) Gọi giao điểm của AM và DE tại N. Xét \(\Delta AEN\) và  \(\Delta AFN\) có :

\(AE=AF\left(cmt\right)\); ^EAN = ^FAN ( ^EAD = ^FAD );  \(AN\) chung. 

\(\Rightarrow\Delta AEN=\Delta AFN\left(c.g.c\right)\Leftrightarrow\) ^ANE =  ^ANF ( tương ứng ). Mà ^ANE + ^ANF = 1800 ( kề bù )

=> ^ANE = ^ANF = 1800 : 2 = 900 \(\Leftrightarrow AN\perp FE\). Mà N là giao điểm của AM và FE

Nên N thuộc AM  \(\Rightarrow AN\perp FE\Leftrightarrow AM\perp FE\left(đpcm\right)\)

Ờ ! viết bằng nhau ''='' thật đấy, nhưng trên hình kí hiệu j đâu mà viết nó ''='' nhau

LOGIC ? 

Cái deck j vại, bn nhìn thấy ^O ở đâu thế bn Minh !

Ý thức ko mua đc ''='' tiền.

a) Xét ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC(M là trung điểm của BC)

\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)

Do đó: ΔBEM=ΔCFM(cạnh huyền-góc nhọn)

b) Ta có: ΔBEM=ΔCFM(cmt)

nên BE=CF(hai cạnh tương ứng)

c) Xét ΔBMF và ΔCME có

MB=MC(M là trung điểm của BC)

\(\widehat{BMF}=\widehat{CME}\)(hai góc đối đỉnh)

MF=ME(ΔCFM=ΔBEM)

Do đó: ΔBMF=ΔCME(c-g-c)

\(\widehat{BFM}=\widehat{CEM}\)(hai góc tương ứng)

mà \(\widehat{BFM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong

nên BF//CE(Dấu hiệu nhận biết hai đường thẳng song song)

a: Xet ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC
\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có

AM chung

AF=AE

Do đó: ΔAFM=ΔAEM

Suy ra: \(\widehat{BAM}=\widehat{CAM}\)

hay AM là tia phân giác của góc BAC

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có

FB=EC

FC=EB

BC chung

DO đó: ΔFBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔBIC cân tại I

d: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,M,I thẳng hàng

b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có 

BC chung

\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)

6 tháng 3 2023

loading...

b) xét ΔBEA và ΔCFA, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

\(\widehat{A}\) là góc chung

=> ΔBEA = ΔCFA (ch-gn)

=> AE = AF (2 cạnh tương ứng)