K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

Hình bạn tự vẽ nhé. EF cắt AH tại L.
Xét tam giác AIM vuông tại I(MI vuông góc AB) có HF//IM ( H là trực tâm nên HF vuông góc AB, từ vuông góc đến song song >> HF//IM) >> \(\frac{AF}{AI}=\frac{AH}{AM}\left(Talet\right)\)
CMTT >> \(\frac{AE}{AK}=\frac{AH}{AM}\left(Talet\right)\)>> \(\frac{AF}{AI}=\frac{AE}{AK}\). Theo Talet đảo có EF // IK.
Xét tam giác AIK có EF // IK >> AEF đồng dạng AIK ( bạn tự cm, quá dễ) >> góc AFE = góc AIK và góc AEF = góc AKI

Xét tam giác AFL và tam giác AID : chung góc A và AFL = AID (cmt) >> AFL đồng dạng AID >> ALF = ADI đồng vị >> ID // EL

CMTT thì LE // DK. Có E,L,F thẳng hàng nên theo tiên đề Euclid suy ra I,D,K thẳng hàng.


 

5 tháng 4 2021

bạn ơi, AFL=AID đang cần chứng minh mà, AFL=AIK mới đúng. nếu AFL=AID=AIK thì I,D,K thẳng hàng rồi.

22 tháng 2 2020

a) Tứ giác BHCkBHCk có 2 đường chéo BCBCHKHK cắt nhau tại trung điểm MM của mỗi đường

⇒BHCK⇒BHCK là hình bình hành.

b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC

HC⊥ABHC⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BCHD⊥BC,D∈BCHD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHICDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKCGK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

...

24 tháng 10 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

23 tháng 12 2020

a) Xét tứ giác BHCK có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: BHCK là hình bình hành(cmt)

nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)

Ta có: BK//CH(cmt)

nên BK//CF

Ta có: BK//CF(cmt)

CF⊥AB(gt)

Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)

Ta có: CK//BH(cmt)

nên CK//BE

Ta có: CK//BE(cmt)

BE⊥AC(gt)

Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)

c) Vì H và I đối xứng nhau qua BC

nên BC là đường trung trực của HI

⇔C nằm trên đường trung trực của HI

hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BHCK là hình bình hành(cmt)

nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)

Từ (1) và (2) suy ra CI=BK

Gọi O là giao điểm của BC và HI

mà BC là đường trung trực của HI

nên O là trung điểm của HI

Xét ΔHIK có 

O là trung điểm của HI(cmt)

M là trung điểm của HK(H và K đối xứng nhau qua M)

Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)

⇒OM//IK(Định lí 2 về đường trung bình của tam giác)

hay IK//BC

Xét tứ giác BIKC có IK//BC(cmt)

nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)

Hình thang BIKC(IK//BC) có IC=BK(cmt)

nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

20 tháng 3 2021

a) Xét tứ giác BHCK có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: BHCK là hình bình hành(cmt)

nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)

Ta có: BK//CH(cmt)

nên BK//CF

Ta có: BK//CF(cmt)

CF⊥AB(gt)

Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)

Ta có: CK//BH(cmt)

nên CK//BE

Ta có: CK//BE(cmt)

BE⊥AC(gt)

Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)

c) Vì H và I đối xứng nhau qua BC

nên BC là đường trung trực của HI

⇔C nằm trên đường trung trực của HI

hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BHCK là hình bình hành(cmt)

nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)

Từ (1) và (2) suy ra CI=BK

Gọi O là giao điểm của BC và HI

mà BC là đường trung trực của HI

nên O là trung điểm của HI

Xét ΔHIK có 

O là trung điểm của HI(cmt)

M là trung điểm của HK(H và K đối xứng nhau qua M)

Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)

⇒OM//IK(Định lí 2 về đường trung bình của tam giác)

hay IK//BC

Xét tứ giác BIKC có IK//BC(cmt)

nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)

Hình thang BIKC(IK//BC) có IC=BK(cmt)

nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)