K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

a, Vì \(HI\text{//}AB;KI\text{//}AC\Rightarrow AHIK\text{ là hbh}\)

b, Để \(AHIK\) là hình thoi thì \(AI\) là phân giác \(\widehat{HIK}\)

Hay I là chân đường phân giác từ A tới BC

c, Để \(AHIK\) là hcn thì \(\widehat{HAK}=90^0\) hay \(\widehat{BAC}=90^0\)

Vậy tam giác ABC vuông tại A thì \(AHIK\) là hcn

30 tháng 6 2017

Hình vuông

24 tháng 12 2017

Giải:

a. Ta có: IK // AC (gt)

hay IK // AH

IH // AB (gt)

hay IH // AK

Vậy tứ giác AHIK là hình bình hành (theo định nghĩa)

b. Hình bình hành AHIK là hình thoi nên đường chéo AI là phân giác của

Ngược lại AI là phân giác của . Hình bình hành AHIK có đường chéo là phân giác của một góc nên hình bình hành AHIK là hình thoi.

Vậy nếu I là giao điểm của đường phân giác của với cạnh BC thì tứ giác AHIK là hình thoi.

c. Hình bình hành AHIK là hình chữ nhật

⇒ˆA=900⇒A^=900suy ra ∆ ABC vuông tại A

Ngược lại ∆ ABC có ˆA=900A^=900

Suy ra: Hình bình hành AHIK là hình chữ nhật.

Vậy nếu ∆ ABC vuông tại A thì tứ giác AHIK là hình chữ nhật.

28 tháng 2 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: IK // AC (gt) hay IK // AH

Lại có: IH // AB (gt) hay IH // AK

Vậy tứ giác AHIK là hình bình hàn

10 tháng 10 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình bình hành AHIK là hình thoi nên đường chéo AI là phân giác của ∠ (BAC)

Ngược lại nếu AI là phân giác của  ∠ (BAC) thì hình bình hành AHIK có đường chéo AI là phân giác của một góc nên hình bình hành AHIK là hình thoi.

Vậy nếu I là giao điểm của đường phân giác của  ∠ A với cạnh BC thì tứ giác AHIK là hình thoi.

25 tháng 11 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình bình hành AHIK là hình chữ nhật

⇒ ∠ A = 90 0  suy ra ∆ ABC vuông tại A. Ngược lại ΔABC có  ∠ A =  90 0

Suy ra hình bình hành AHIK là hình chữ nhật

Vậy nếu  ∆ ABC vuông tại A thì tứ giác AHIK là hình chữ nhật.

28 tháng 9 2020

a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC

Tứ giác MNCB có MN // BC nên là hình thang

b) Xét ∆EQN và ∆KQC có:

     ^ENQ = ^KCQ (BN//CK, so le trong)

     QN = QC (gt)

     ^EQN = ^KQC (đối đỉnh)

Do đó ∆EQN = ∆KQC (g.c.g)

=> EN = KC ( hai cạnh tương ứng)                  (1)

∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE              (2)

Từ (1) và (2) suy ra KC = BE

Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)

c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)

d) Gọi J là trung điểm của BC 

Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ

Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF

Mà dễ thấy EF // BC nên IJ⊥BC

∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)

28 tháng 9 2020

a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.

=> MN //BC

Tứ giác MNCB có MNBC nên MNCB là hình thang.

b) Xét tứ giác EKCB có EK//BC, BE//CK

=> EKCB là hình bình hành

=> EK = BC (đpcm)