K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021
xin lũi câu tính S mìnk khum làm đc :Đ
22 tháng 12 2021

ABCHEDF----------

a) Vì E là trung điểm AC; D trung điểm AB (gt)

=> ED là đường tb của tam giác ABC

=> ED//CB;ED=1/2CB

Mà F là trung điểm BC (gt)=>FB=FC=1/2BC

Do đó: ED//FB;ED=1/2FB

Nên tứ giác BDEF là hbh (2 cạnh đối // và = nhau)

b) Nối H với D ta có:

Xét tam giác vuông ABC có DA=DB=1/2AB (D trung đ AB)

=> HD là đường trung tuyến của tam giác ABC (đg trung tuyến ứng vs cạnh huyền)

=>HD=1/2AB

Nên: HD=DB (1)

gọi I nằm giữa D và F

Vì AC//DF và DF=1/2 AC (DF là đg tb;cmt)

=>AE=DF;AE//DF

=>AEFD là hbh (2 cạnh đối // và =nhau)

Mà H thuộc AE thuộc D và I thuộc DF

=> HE//DF=> HEFD là hình thang 

Lại có: đường cao BH=> ^BHC=90o

=> HEFD là hình thang cân

=> ^AEF=90o

=>AEFD là hcn (hbh có 1 góc _|_)

=> ^DFE=90(2)

Từ (1) và (2)=> DF là đường trung trực của ^HDB

=> I trung điểm HB

Nên:H và B đối xứng với nhau qua DF (đpcm)

c) Để BDEF là hcn => hbh BDEF có 1 góc vuông 

=> ^FEC=90o

Mà EA=EC

=>FE là đường trung tuyến của cạnh AC

=>EA=EC=1/2AC

Do đó FD cũng là đường trung tuyến cạnh AB

=>DA=DB=1/2AB

Nên: AC=AB

=> tam giác ABC là tam giác cân tại A

Vậy tam giác ABC là tam giác cân tại A thì BDEF là hcn.

12 tháng 3 2021

A B C H D E F

12 tháng 3 2021

Xét \(\Delta ABC\)có:

DB = DA (giả thiết)

AE = CE (giả thiết)

\(\Rightarrow DE\)là đường trung bình của \(\Delta ABC\)

\(DE//BC\)(tính chất) \(\Rightarrow DE//BF\)(1)

Và \(2DE=BC\)(tính chất)

Mà \(2BF=BC\)(vì \(BF=CF\))

\(\Rightarrow2DE=2BF\Rightarrow DE=BF\)(2)

Xét tứ giác BDEF có: (1) và (2).

\(\Rightarrow BDEF\)là hình bình hành.

Vậy BDEF là hình bình hành.

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC và DE=BC/2

=>DE//BF và DE=BF

=>BDEF là hình bình hành

b: Xét ΔBAC có BD/BA=BF/BC

nên DF//AC và DF=AC/2

=>DF=EK

Xét tứ giác DEFK cos

DE//FK

DF=EK

Do đó: DEFK là hình thang cân

2 tháng 12 2021

Bài 1:

a) Xét tam giác ABC vuông tại A có: 

+ D là trung điểm của AB (gt).

+ E là trung điểm của AC (gt).

=> DE là đường trung bình (Định nghĩa đường trung bình trong tam giác).

=> DE = \(\dfrac{1}{2}\)BC (Tính chất đường trung bình trong tam giác).

Mà BC = 10 cm (gt).

=> DE = 5 cm.

Vậy DE = 5 cm.

b) Xét tam giác ABC vuông tại A có: 

DE là đường trung bình (cmt)

=> DE // BC (Tính chất đường trung bình trong tam giác).

Ta có: F là trung điểm của BC (gt). => BF = CF = \(\dfrac{1}{2}\)BC.

Mà DE = \(\dfrac{1}{2}\)BC (cmt).

=> BF = CF = DE = \(\dfrac{1}{2}\)BC.

Xét tứ giác BDEF có: 

+ BF = DE (cmt).

+ BF // DE (do DE // BC).

=> Tứ giác BDEF là hình bình hành (dhnb).

c) Xét tam giác ABC vuông tại A:

+ D là trung điểm của AB (gt).

+ F là trung điểm của BC (gt).

=> DF là đường trung bình (Định nghĩa đường trung bình trong tam giác).

=> DF // AC  và DF = \(\dfrac{1}{2}\)AC (Tính chất đường trung bình trong tam giác). 

Ta có: DF = \(\dfrac{1}{2}\)AC (cmt).

Mà AE = CE = \(\dfrac{1}{2}\)AC (E là trung điểm AC).

=> AE = CE = DF = \(\dfrac{1}{2}\)AC.

Xét tứ giác ADEF có:

+ AE = DF (cmt).

+ AE // DF (do DF // AC).

=> Tứ giác ADEF là hình bình hành (dhnb).

Mà ^DAE = 90o (do tam giác ABC vuông tại A).

=> Tứ giác ADEF là hình chữ nhật (dhnb).

d) Gọi I là giao điểm của AF và DE.

Xét hình chữ nhật ADEF có: I là giao điểm của AF và DE (cách vẽ).

=> I là trung điểm của AF và DE (Tính chất hình chữ nhật). (1)

Ta có: G là điểm đối xứng của F qua D (gt).

=> D là trung điểm của CG.

=> DF = \(\dfrac{1}{2}\)GF.

Mà DF = \(\dfrac{1}{2}\)AC (cmt).

=> GF = AC.

Xét tứ giác GACF có:

+ GF = AC (cmt).

+ GF // AC (do DF // AC).

=> Tứ giác GACF là hình bình hành (dhnb).

=> Giao điểm của 2 đường chéo AF và GC là trung điểm mỗi đường (Tính chất hình bình hành).

Mà I là trung điểm của AF (cmt)

=> I là trung điểm của GC (2).

Từ (1) và (2) => Các đường thẳng AF; GC; DE cùng cắt nhau tại điểm I.

hay các đường thẳng AF; GC; DE cùng cắt nhau tại trung điểm mỗi đường (đpcm).

18 tháng 8 2018

Hình bạn tự vẽ nha.

a, \(\Delta ABC\)có: \(AD=DB\left(gt\right)\)

                            \(AE=EC\left(gt\right)\)

\(\Rightarrow\)DE là đường trung bình của \(\Delta ABC\Rightarrow\hept{\begin{cases}DE//BC\\DE=\frac{1}{2}BC\end{cases}}\)

                                                               mà \(BF=\frac{1}{2}BC\left(gt\right)\)

\(\Rightarrow\hept{\begin{cases}DE//BF\\DE=BF\end{cases}}\)

Tứ giác BDEF có: \(\hept{\begin{cases}DE//BF\left(cmt\right)\\DE=BF\left(cmt\right)\end{cases}}\)

\(\Rightarrow\)BDEF là hình bình hành

b, Ta có: I đối xứng với J qua E \(\Rightarrow\)E là trung điểm của IJ

Tứ giác AICJ có 2 đường chéo AC và IJ cắt nhau tại trung điểm E của mỗi đường \(\Rightarrow\)AICJ là hình bình hành mà \(\widehat{AIC}=90^o\Rightarrow\)AICJ là hình chữ nhật

c, \(\Delta ABC\)có: \(AD=BD\left(gt\right)\)

                            \(BF=FC\left(gt\right)\)

\(\Rightarrow\)DF là đường trung bình của \(\Delta ABC\Rightarrow DF//AC\)

Tứ giác ADKE có \(DK//AE\left(cmt\right)\Rightarrow\)ADKE là hình thang

Tương tự ta có tứ giác KECF là hình thang

BDEF là hình bình hành \(\Rightarrow DK=KF=\frac{1}{2}DF\)

Ta có: \(S_{ADKE}=\frac{\left(DK+AE\right).KE}{2}\)

\(S_{KECF}=\frac{\left(KF+EC\right).KE}{2}\)

mà \(DK=KF,AE=EC\left(cmt\right)\)

\(\Rightarrow S_{ADKE}=S_{KECF}\)