K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

\(BD=AB+AD=4+5=9\left(cm\right)\)

\(\Delta ABC\) và \(\Delta CBD\) có: 

        \(\frac{AB}{BC}=\frac{BC}{BD}\left(=\frac{2}{3}\right)\)

          Góc B chung

\(\Rightarrow\Delta ABC\infty\Delta CBD\left(c.g.c\right)\Rightarrow\hept{\begin{cases}\widehat{ACB}=\widehat{D}\\\frac{AB}{CB}=\frac{AC}{CD}\left(1\right)\end{cases}}\)

b, Từ (1) thay số vào: \(\frac{4}{6}=\frac{5}{CD}\Rightarrow CD=7,5\left(cm\right)\)

c, \(\widehat{BAC}=\widehat{D}+\widehat{ACD}=2\widehat{D}=2\widehat{ACB}\)

11 tháng 3 2017

a) Xét tam giác BAD và tam giác MCD có:

góc BAD = MCD (gt)

góc ADB = CDM (2 góc đối đỉnh)

=> 2 tam giác trên đồng dạng => AB/CM = DB/DM => AB.DM = DB.CM

b) Tam giác BAD đồng dạng vói MCD (cmt) => góc ABD = CMD

Xét tam giác ABD và AMC có: góc BAD = MAC (gt)

                                            góc ABD = ACM (cmt)

=> 2 tam giác trên đồng dạng

Còn ý d bạn dùng định lý Ceva nha.


A B c D M

11 tháng 3 2017

chủ yếu là ý c thôi

27 tháng 6 2018

Hình tự vẽ nhá 

Vì tam giác ABC cân tại A nên:

\(\widehat{B}=\widehat{C}\)

Mà \(\widehat{B}=\widehat{DME}\)

Suy ra: \(\widehat{C}=\widehat{DME}\)

Mặt khác: \(\widehat{BME}=\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{C}\)(góc ngoài của tam giác MEC)

Suy ra: \(\widehat{BMD}=\widehat{MEC}\)

Xét tam giác BMD và tam giác CEM có:

\(\widehat{B}=\widehat{C}\)(gt)

+\(\widehat{BMD}=\widehat{MEC}\)(cmt)

Do đó: \(\Delta BMD~\Delta CEM\)(g.g)

Suy ra: \(\frac{BM}{CE}=\frac{BD}{CM}\Leftrightarrow BM\cdot CM=CE\cdot BD\)

Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi

Vậy BD.CE không đổi

1 tháng 12 2018

ý c nhé, a và b dễ tự làm nhé:

https://vn.answers.yahoo.com/question/index?qid=20110323013140AAJ5GpF