K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

A B C D 1 2

Giải:

Xét \(\Delta ADB\)\(\Delta ADC\) có:
AB = AC ( gt )

\(\widehat{D_1}=\widehat{D_2}\left(=90^o\right)\)

BD = DC ( gt )

\(\Rightarrow\Delta ADB=\Delta ADC\left(c-g-c\right)\)

4 tháng 11 2017

A B C D 1 2

Xét t/g ADB và t/g ADC có:

AB = AC (gt)

góc A1 = góc A2 (gt)

DB = DC (gt)

Do đó t/g ADB = t/g ADC

7 tháng 11 2017

ABCD12

Xét ∆ADB và ∆ADC có:

AB = AC (gt)

góc A1 = góc A2 (gt)

DB = DC (gt)

Vậy ∆ADB=∆ADC

Bạn st viết vầy rất nhiều người ko hiểu t/g 

a: Xét ΔABD và ΔACD có

AB=AC
góc BAD=goc CAD

AD chung

=>ΔABD=ΔACD

b: ΔABD=ΔACD

=>BD=CD

c: ΔACB cân tại A

mà ADlà trung tuyến

nên AD vuông góc BC

21 tháng 3 2023

cảm ơn bn

27 tháng 12 2017

A B C D H K 1 2

a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :

AD ( cạnh chung )

\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )

AB = AC ( gt )

suy ra \(\Delta ADB\)\(\Delta ADC\)( c.g.c )

b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng )                         ( theo câu a )

Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)

\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AD\perp BC\)

c) vì \(\Delta ADB\)\(\Delta ADC\)( theo câu a )

\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )

\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )

Mà \(\widehat{ABD}+\widehat{BDH}=90^o\)\(\widehat{ACD}+\widehat{CDK}=90^o\)

\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)

Xét \(\Delta HBD\)và \(\Delta KCD\)có :

\(\widehat{BDH}=\widehat{CDK}\)( cmt )

BD = CD ( cmt )

\(\widehat{ABD}=\widehat{ACD}\)( cmt )

suy ra \(\Delta HBD\)\(\Delta KCD\)( g.c.g )

\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: AD=DM

DM<DC

=>AD<DC

19 tháng 12 2021

a: Xét ΔADB và ΔADC có 

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔADB=ΔADC

10 tháng 1 2022

10 tháng 1 2022

TK

 

31 tháng 12 2023

a: Xét ΔADB và ΔADC có

AB=AC

AD chung

BD=CD

Do đó: ΔADB=ΔADC

b: Ta có: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của góc BAC

c: Xét ΔADM vuông tại M và ΔADN vuông tại N có

AD chung

\(\widehat{DAM}=\widehat{DAN}\)

Do đó: ΔADM=ΔADN

=>AM=AN

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC