K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

a) Xét ΔMAB và ΔMEC có 

MA=ME(gt)

ˆAMB=ˆEMCAMB^=EMC^(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔMAB=ΔMEC(c-g-c)

Có thể vẽ thêm hình không ạ

25 tháng 4 2021

phải đúng là công chúa đẹp bét hệ mặt trời

cậu không giải bài giúp tôi thì cũng đừng cmt như thế

15 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

b: Xét ΔMBA vuông tại M và ΔMCD vuông tại M có

MB=MC

MA=MD

Do đó: ΔMBA=ΔMCD

=>\(\widehat{MBA}=\widehat{MCD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó: ΔBEM=ΔCFM

=>ME=MF 

ΔBEM=ΔCFM

=>\(\widehat{BME}=\widehat{CMF}\)

mà \(\widehat{BME}+\widehat{EMC}=180^0\)(hai góc kề bù)

nên \(\widehat{CMF}+\widehat{EMC}=180^0\)

=>F,M,E thẳng hàng

mà MF=ME

nên M là trung điểm của EF

25 tháng 1 2016

hình như bài này sai đề

 

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

21 tháng 12 2018

https://cunghocvui.com/danh-muc/toan-lop-7 Trong này có lời giải nhée

15 tháng 12 2019

Xét \(\Delta ABM\)\(\Delta ECM\)có :

\(M_1=M_2\)(đối đỉnh)

\(BM=CM\)(gt)

\(AM=EM\)(gt)

\(=>\Delta ABM=\Delta ECM\)(c.g.c)

b,Do \(\Delta ABM=\Delta ECM\)(câu a)

\(=>A=E\)

\(=>AB//EC\)(so le trong)

c, Do \(HF\)là tia đối của tia \(HA\)(1)

\(AHB=90^0\)(2)

Từ (1) và (2) => \(FHB=AHB=90^0\)

Xét \(\Delta AHB\)và \(\Delta FHB\)có :

\(AH=FH\)(gt)

\(HB\)(cạnh chung)

\(AHB=FHB\)(c/m trên)

\(=>\Delta AHB=\Delta FHB\)(c.g.c)

\(=>ABH=FBH\)

\(=>ĐPCM\)

P/S: Chưa check lại và chưa ghi dấu nón cho góc =))

16 tháng 12 2016


A B C D E H M

16 tháng 12 2016

Làm tiếp nha:

Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành.

=> \(\hept{\begin{cases}AB=CE\left(1\right)\\ABllCE\end{cases}}\)

a ) xét \(\Delta ABM\)và \(\Delta ECM\)có:

\(\hept{\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}}\)

---> \(\Delta ABM=\Delta ECM\left(c.c.c\right)\)

b) Xét \(\Delta ABD\) có BH là đường cao đồng thời đường trung tuyến nên \(\Delta ABD\) cân tại B.

---> BC là phân giác của ABD

\(\Delta ABD\)cân tại B ---> AB = BD (2)

Từ (1),(2) ---> BD = CE