Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ EK // AI
*Ta tính được BC = 5; CH = 3,2; CI = 2 căn 5; AI = 2
*Tam giác AKE đồng dạng tam giác AHC nên AK/KE=AH/HC=3/4 ; AK =3/4 KE (1)
*Tam giác CKE đồng dạng tam giác CAI nên
KE/AI=CK/AC=1 – AK/AC ; KE/2 = 1 – AK / 4 (2)
*Từ (1) và (2) suy ra: KE =16/11; AK = 12/11
*Ta lại có: KE/AI=CE/CI; CE = KE.CI/AI = 16 căn 5/ 11
Bạn nào cần tư vấn học tập liên hệ: 0374806645
Kẻ EK // AI
*Ta tính được BC = 5; CH = 3,2; CI = 2 căn 5; AI = 2
*Tam giác AKE đồng dạng tam giác AHC nên AK/KE=AH/HC=3/4 ; AK =3/4 KE (1)
*Tam giác CKE đồng dạng tam giác CAI nên
KE/AI=CK/AC=1 – AK/AC ; KE/2 = 1 – AK / 4 (2)
*Từ (1) và (2) suy ra: KE =16/11; AK = 12/11
*Ta lại có: KE/AI=CE/CI; CE = KE.CI/AI = 16 căn 5/ 11
Bạn nào cần tư vấn học tập liên hệ: 0374806645
a) Xét tam giác AHB và tgiac CHA có:
góc AHB = góc CHA = 900
góc HAB = góc HCA (cùng phụ HAC)
suy ra: tgiac AHB ~ tgiac CHA (g.g)
b) Áp dụng Pytago ta có:
AH2 + BH2 = AB2 => BH2 = AB2 - AH2 = 81 => BH = 9
Áp dụng hệ thức lượng ta có:
AB2 = BH.BC => BC = AB2 / BH =25
=> HC = BC - BH = 25 - 9 = 16
Áp dụng hệ thức lượng ta có:
AC2 = HC . BC => AC2 = 400 => AC = 20
c) Xét tgiac CFE và tgiac CAB có:
góc C chung
CF / CA = CE / CB (4/20 = 5/25 )
suy ra: tgiac CFE ~ tgiac CAB (c.g.c)
=> góc CFE = góc CAB = 900
Vậy tgiac CFE vuông tại F
a: \(AH=\sqrt{2\cdot4}=2\sqrt{2}\left(cm\right)\)
\(AB=\sqrt{AH^2+HB^2}=2\sqrt{3}\left(cm\right)\)
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=2,4(cm)
Có ai biết làm bài này ko,,,mình cũng đag mắc bài này nè
Lớp 9 thì ma nào giải nổi!