K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: BC > AB > AC ( vì 8cm > 6cm >5cm)

=> \(\widehat{A}>\widehat{C}>\widehat{B}\)(Quan hệ giữa góc và cạch đối diện trong tam giác)

=> D là đáp án đúng

=> chọn B

nhầm nhé bạn mik viết nhầm

=> chọn D

6 tháng 5 2018

c)GÓc A < góc C < góc B

6 tháng 5 2018

góc A>gócC>gócB(D)

Theo định lý `1` của quan hệ giữa cạnh đối diện và góc đối diện trong tam giác 

`->`\(\widehat{A}>\widehat{B}>\widehat{C}\) 

`->` Nhận định đúng là đ/án `B`

14 tháng 3 2023

B.góc C<góc B< góc A

Câu 1: A

Câu 2: B

Câu 3: C

Câu 4: A

Câu 5: D

Chọn B

10 tháng 5 2022

B

21 tháng 5 2021

Góc C < Góc A < Góc B 

21 tháng 5 2021

Thực chất tam giác này vuông anh ạ:))

 

19 tháng 7 2019

a ) Ta có : AB < AC < BC ( 6 < 8 < 10 )

=> \(\widehat{C}< \widehat{B}< \widehat{A}\)( quan hệ giữa góc và cạnh đối diện )

b ) \(\Delta ABC\)có : AB2 + AC2 = 62 + 82 = 100

                             BC2 = 102 = 100

=> AB2 + AC2 = BC2

Theo đ/l Py-ta-go => Tam giác ABC là tam giác vuông

c ) DH \(\perp\)BC => Tam giác BHD vuông

Xét 2 tam giác vuông : \(\Delta BHD\)và \(\Delta BAD\)có :

BD là cạnh chung

\(\widehat{ABD}=\widehat{HBD}\)( do BD là tia p/g của góc B )

=> Tam giác BHD = tam giác BAD

=> \(\widehat{BDA}=\widehat{BDH}\)

=> DB là tia p/g của góc ADN

d ) tự làm

19 tháng 7 2019

A B C D H M

Giải: a) Ta có: AB < AC < BC(6cm < 8cm< 10cm)

=> \(\widehat{C}< \widehat{B}< \widehat{A}\) (quan hệ giữa cạnh và góc đối diện)

b) Ta có: AB+ AC2 = 62 + 82 = 36 + 64 = 100

         BC2 = 102 = 100

=> AB2 + AC2 = BC2

=> t/giác ABC là t/giác vuông (theo định lí Pi - ta - go đảo)

c) Xét t/giác ABD và t/giác HBD

có: \(\widehat{A}=\widehat{BHD}=90^0\)

   BD : chung

  \(\widehat{ABD}=\widehat{HBD}\)(gt)

=> t/giác ABD = t/giác HBD (ch - gn)

=>\(\widehat{ADB}=\widehat{HDB}\) (2 góc t/ứng)

=> DB là tia p/giác của góc ADH

d) Xét t/giác ADM và t/giác HDC

có: \(\widehat{MAD}=\widehat{DHC}=90^0\)

  AD = HD (vì t/giác ABD = t/giác HBD)

   \(\widehat{ADM}=\widehat{HDC}\) (đối đỉnh)

=> t/giác ADM = t/giác HDC (g.c.g)

=> AM= HC (2 cạnh t/ứng)

Mà AB + AM = BM 

   BH +  HC = BC

và AB = BH (vì t/giác ABD = t/giác HBD) ; AM = HC (cmt)

=> BM = BC => t/giác AMC cân tại B

=> \(\widehat{M}=\widehat{C}=\frac{180^0-\widehat{B}}{2}\) (1)

Ta có: AB = HB (vì t/giác ABD  = t/giác HBD)

=> t/giác ABH cân tại B

=> \(\widehat{BAH}=\widehat{BHA}=\frac{180^0-\widehat{B}}{2}\) (2)

Từ (1) và (2) => \(\widehat{M}=\widehat{BAH}\)

Mà 2 góc này ở vị trí đồng vị

=> CM // AH