Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng đbt Cauchy cho 2 số không âm ta có :
\(x+\frac{4}{x}\ge2\sqrt{x\cdot\frac{4}{x}}=2\cdot\sqrt{4}=2\cdot2=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{x}\\x=2\end{cases}\Leftrightarrow x=2}\)
áp dụng bđt Cô -si: x+y+z\(\ge3\sqrt[3]{xyz}\) với 3 số x,y,z không âm
ta có: \(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=3\sqrt[3]{\frac{1}{8}}=\frac{3}{2}\)(1)
tương tự: \(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\) (2)
\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\)(3)
cộng (1), (2) và (3) ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge3.\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{9}{2}-\frac{3}{2}-\frac{6}{4}=\frac{3}{2}\)
dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Từ giả thiết , ta có :
\(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1\right)\)
\(\Rightarrow1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\)
Áp dụng bất đẳng thức sau : \(abc\le\left(\frac{a+b+c}{3}\right)^3\) ta có :
\(1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\le\left(\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3}{3}\right)^3\)
\(\Rightarrow3\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3\)
\(\Rightarrow6\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow6xyz\le xy+yz+zx\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra:
\(3-3\left(x+y+z\right)+3\left(xy+yz+zx\right)=6xyz\le xy+yz+zx\)
\(\Rightarrow0\ge3-3\left(x+y+z\right)+2\left(xy+yz+zx\right)\)
Cộng 2 vế của bất đẳng thức trên cho \(\left(x^2+y^2+z^2\right)\)ta được:
\(x^2+y^2+z^2\ge\left(x+y+z\right)^2-3\left(x+y+z+3\right)=\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu '' = '' xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)
ta có:
xyz=(1-x).(1-y).(1-z) (1)
=>1=(1:x-1).(1:y-1).(1:z-1)
sai đè bài òi bạn ơi
bn sai mới đúng
Chú ý điểm rơi của nó kìa !!