Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(z=a+bi\). Ta có: \(|z|\leq 2\Leftrightarrow a^2+b^2\leq 4\)
Có:
\(p=2|z+1|+2|z-1|+|z-\overline{z}-4i|\)
\(=2|(a+1)+bi|+2|(a-1)+bi|+|(a+bi)-(a-bi)-4i|\)
\(=2\sqrt{(a+1)^2+b^2}+2\sqrt{(a-1)^2+b^2}+\sqrt{(2b-4)^2}\)
\(=2\sqrt{(a+1)^2+b^2}+\sqrt{(a-1)^2+b^2}+4-2b\)
(do \(a^2+b^2\leq 4\Rightarrow b^2\leq 4\Rightarrow b\leq 2\Rightarrow \sqrt{(2b-4)^2}=4-2b\) )
\(\Leftrightarrow p=2[\sqrt{(a+1)^2+b^2}+\sqrt{(a-1)^2+b^2}-b+2]\)
Theo BĐT Mincopxky :
\(p\geq 2(\sqrt{(a+1+1-a)^2+(b+b)^2}-b+2)\)
\(\Leftrightarrow p\geq 2(2\sqrt{b^2+1}-b+2)\)
Xét \(f(b)=2\sqrt{b^2+1}-b+2\) với \(b\in [-2;2]\)
Có: \(f'(b)=\frac{2b}{\sqrt{b^2+1}}-1=0\Leftrightarrow b=\pm \frac{\sqrt{3}}{3}\)
Lập bảng biến thiên ta suy ra \(f(b)_{\min}=f(\frac{\sqrt{3}}{3})=2+\sqrt{3}\)
\(\Rightarrow p\geq 2f(b)\geq 2(2+\sqrt{3})\)
Vậy \(p_{\min}=4+2\sqrt{3}\)
Dấu bằng xảy ra khi \(b=\frac{\sqrt{3}}{3}; \frac{a+1}{1-a}=\frac{b}{b}=1\Rightarrow a=0\)
a) Tập hợp các điểm M(x; y) của mặt phẳng tọa độ biểu diễn số phức z = x +yi thỏa mãn điều kiện:
|z|<2 ⇔ √(x2+y2 )<2 ⇔x2+y2<4
Các điểm M(x; y) như vậy nằm trong đường tròn có tâm O bán kính bằng 2 không kể các điểm trên đường tròn.
b) Giả sử z=x+yi=>z-i=z+(y-1)i
|z-1|≤1 ⇔ √(x2 (y-1)2 )≤1 ⇔x2+(y-1)2≤1
Tập hợp tất cả các điểm biểu diễn các số phức thỏa mãn |z – 1|≤1 là các điểm của hình tròn tâm (0; 1) bán kính bằng 1 kể cả biên.
c) z=x+yi=>z-1-i=(x-1)+(y-1)i
|z-1-i|<1 ⇔ (x-1)2+(y-1)2<1
Tập hợp các điểm đang xét là các điểm của hình tròn ( không kể biên) tâm (1;1), bán kính bằng 1.
Em chỉ thử sức thôi chứ em cũng không rõ lắm ạ
đặt z = x +yi
a) \(\left|Z\right|\)<2
<=> \(\left|x+yi\right|\)<2 <=> \(\sqrt{x^2+y^2}\)<2 <=> x2 +y2 <4
vậy tập hợp biểu diễn số phức Z là đường tròn tâm I(0;0) bán kính R=2 không tính biên
b) \(\left|z-i\right|\)\(\le\)1
\(\Leftrightarrow\)\(\left|x +yi-i\right|\le1\Leftrightarrow\sqrt{x^2+\left(y-1\right)^2}\le1\)
\(\Leftrightarrow x^2+\left(y-1\right)^2\le1\)
vậy tập hợp biểu diễn số phức Z là đường tròn tâm I(0,1) bán kính R=1 tính cả biên
c) \(\left|z-1-i\right|\)<1
\(\Leftrightarrow\left|x+yi-1-i\right|< 1\\ \Leftrightarrow\sqrt{\left(x-1\right)^2+\left(y-1\right)^2}< 1\\ \Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2< 1\)
vậy tập hợp biểu diễn số phức Z là đường tròn tâm I(1;1) bán kính R=1 không tính biên
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
Bài này thì chia 2 vế của giả thiết cho z2 ta thu được:
\(\frac{x}{z}+2.\frac{x}{z}.\frac{y}{z}+\frac{y}{z}=4\Leftrightarrow a+2ab+b=4\)
(đặt \(a=\frac{x}{z};b=\frac{y}{z}\)).Mà ta có: \(4=a+2ab+b\le a+b+\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\ge2\) Lại có:
\(P=\frac{\left(\frac{x}{z}+\frac{y}{z}\right)^2}{\left(\frac{x}{z}+\frac{y}{z}\right)^2+\left(\frac{x}{z}+\frac{y}{z}\right)}+\frac{3}{2}.\frac{1}{\left(\frac{x}{z}+\frac{y}{z}+1\right)^2}\) (chia lần lượt cả tử và mẫu của mỗi phân thức cho z2)
\(=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}+\frac{3}{2\left(a+b+1\right)^2}\).. Tiếp tục đặt \(t=a+b\ge2\) thu được:
\(P=\frac{t}{\left(t+1\right)}+\frac{3}{2\left(t+1\right)^2}=\frac{2t\left(t+1\right)+3}{2\left(t+1\right)^2}\)\(=\frac{2t^2+2t+3}{2\left(t+1\right)^2}-\frac{5}{6}+\frac{5}{6}\)
\(=\frac{2\left(t-2\right)^2}{12\left(t+1\right)^2}+\frac{5}{6}\ge\frac{5}{6}\)
Vậy...
P/s: check xem em có tính sai chỗ nào không:v
Giả sử z = x + yi, (x,y ε R), khi đó trên mặt phẳng toạ độ Oxy, điểm M(x;y) biểu diễn số phức z.
a) Ta có |z| = 1 ⇔ = 1 ⇔ x2 + y2 = 1.
Vậy tập hợp điểm biểu diễn số phức z là đường tròn tam O, bán kính bằng 1
b) Ta có |z| ≤ 1 ⇔ ≤ 1 ⇔ x2 + y2 ≤ 1.
Vậy tập hợp điểm biểu diễn số phức z là hình tròn tâm O, bán kính bằng 1 (kể cả các điểm trên đường tròn) (hình b)
c) Ta có 1 < |z| ≤ 2 ⇔ 1 < ≤ 2 ⇔ 1 < x2 + y2 ≤ 4.
Vậy tập hợp điểm biểu diễn số phức z là phần nằm giữa đường tròn tâm O, bán kính bằng 1 (không kể điểm trên đường tròn này) và đường tròn tâm O, bán kính bằng 2 (kể cả các điểm trên đường tròn này)
d) Ta có |z| = 1 ⇔ = 1 ⇔ x2 + y2 = 1 và phần ảo của z bằng 1 tức y = 1. Suy ra x = 0 và y = 1
Vậy tập hợp các điểm cần tìm là điểm A(0;1)
\(A=\left(\frac{1+i}{1-i}\right)^{11}=\left(i\right)^{11}=i\cdot\left(i^2\right)^5=-i\)
\(B=\left(\frac{2i}{1+i}\right)^8=\left(1+i\right)^8=\left[\left(1+i\right)^2\right]^4=\left(2i\right)^4=16\)
\(\Rightarrow\overline{z}=16-i\Leftrightarrow z=16+i\)
Vậy \(\left|\overline{z}+iz\right|=\left|15+15i\right|=15\sqrt{2}\)
Lời giải:
Ta có:
\(|z^2+1|=4|z|\Leftrightarrow \frac{|z^2+1|^2}{|z|^2}=16\)
\(\Leftrightarrow 16=\frac{(z^2+1)(\overline{z^2}+1)}{|z|^2}=\frac{|z|^4+z^2+\overline{z^2}+1}{|z|^2}\)
\(\Leftrightarrow 16=\frac{|z|^4+(z+\overline{z})^2-2|z|^2+1}{|z|^2}\geq \frac{|z|^4-2|z|^2+1}{|z|^2}\)
Đặt \(|z|^2=t\Rightarrow 16\geq \frac{t^2-2t+1}{t}\)
\(\Leftrightarrow t^2-18t+1\leq 0\Leftrightarrow 9-4\sqrt{5}\leq t\leq 9+4\sqrt{5}\)
\(\Rightarrow \sqrt{5}-2\leq |z|\leq \sqrt{5}+2\) hay \(|z|_{\min}=\sqrt{5}-2;|z|_{\max}=\sqrt{5}+2\)
Tổng quát: Nếu \(|z+\frac{1}{z}|=k\Rightarrow |z|_{\max}=\frac{\sqrt{k^2+4}+k}{2};|z|_{\min}=\frac{\sqrt{k^2+4}-k}{2}\)
Có thể đưa về hàm số:
\(AB=2\Rightarrow MB=\sqrt{AB^2-MA^2}=\sqrt{4-MA^2}\)
Đặt \(MA=t\) với \(0\le t\le2\) \(\Rightarrow MB=\sqrt{4-t^2}\)
\(P=MA+2MB=f\left(t\right)=t+2\sqrt{4-t^2}\)
Xét hàm \(f\left(t\right)\) trên \(\left[0;2\right]\)
\(f'\left(t\right)=1-\dfrac{2t}{\sqrt{4-t^2}}=0\Rightarrow2t=\sqrt{4-t^2}\Rightarrow5t^2=4\Rightarrow t=\dfrac{2}{\sqrt{5}}\)
\(f\left(0\right)=4\) ; \(f\left(2\right)=2\) ; \(f\left(\dfrac{2}{\sqrt{5}}\right)=2\sqrt{5}\)
\(\Rightarrow f\left(t\right)_{max}=2\sqrt{5}\Rightarrow P_{max}=2\sqrt{5}\)