Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Phương pháp:
Đặt z = a + b i , a , b ∈ R , giải tìm số phức z và tính tổng phần thực, phần ảo: a + b .
Cách giải:
Đặt z = a + b i , a , b ∈ R .
i z + 1 − i z ¯ = − 2 i ⇔ i a + b i + 1 − i a − b i = − 2 i ⇔ a i − b + a + b i − a i − b = − 2 i
⇔ − b i + a − 2 b = − 2 i ⇔ − b = − 2 a − 2 b = 0 ⇔ b = 2 a = 4 ⇒ a + b = 6
Tổng của phần thực và phần ảo là 6.
Đáp án D
Vậy phần thực và phần ảo của số phức z 1 . z 2 tương ứng là 4 và 0.
Đáp án là C.
z = 3 + 2 i . Phần thực và phần ảo của z lần lượt là: 3&2
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Đáp án C
z ¯ = 5 - 2 i có phần thực bằng 5 và phần ảo bằng -2.