Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do a ;a+k ; a+2k là số nguyên tố >3
=> a;a+k;a+2k lẻ
=> 2a+k chẵn =>k⋮ 2
mặt khác a là số nguyên tố >3
=> a có dạng 3p+1 và 3p+2(p∈ N*)
xét a=3p+1
ta lại có k có dạng 3b ;3b+1;3b+2(b∈ N*)
với k=3b+1 ta có 3p+1+2(3b+1)=3(p+1+3b) loại vì a+2k là hợp số
với k=3b+2 => b+k= 3(p+b+1) loại
=> k=3a
tương tự với 3p+2
=> k=3a
=> k⋮3
mà (3;2)=1
=> k⋮6
Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ.
Mà số chẵn lớn hơn 3 thì chia hết cho 2 $⇒$⇒ không là số nguyên tố.
Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 $$ Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3 (vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
- Nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
- Nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 $⇒$⇒ k chia hết cho tích (2 . 3)
$$ k chia hết cho 6 (đpcm).
Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn ﴾tức là k chia hết cho 2﴿
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
﴾vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2﴿.
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6
a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24
Xét n=1 thì K=2\(\Rightarrow2K-1=3,2K+1=5\)
Xét n>1 thì K chia hết cho 3,từ đây dễ dàng suy ra 2K-1 chia 3 dư 2 à do đó 2K-1 không là số chính phương
Mặt khác thì 2K+1 lẻ nên nếu 2K+1 là số chính phương thì 2K+1 chia 8 dư 1(1)
Mà với n>1 thì K có dạng 2.2.M=4M,trong đó M là tích các số nguyên tố liền sau 2
Ta thấy M lẻ nên đặt M=2t+1 suy ra 2K+1=4.(2t+1)+1=8t+5,mâu thuẫn với (1)
Vậy 2K-1 và 2K+1 không là số chính phương
\(\frac{2008}{2009};\frac{20}{19}\)
\(1-\frac{2008}{2009}=\frac{1}{2009}\)
\(1-\frac{20}{19}=\frac{-1}{19}=\frac{1}{19}\)
Vì 19 < 2009 Nên \(\frac{1}{2009}< \frac{1}{19}\)
Vậy \(\frac{2008}{2009}>\frac{20}{19}\)
\(2^x+2^{x+3}=144\)
\(\Leftrightarrow2^x+2^x.2^3=144\)
\(\Leftrightarrow2^x+2^x.8=144\)
\(\Leftrightarrow2^x.\left(1+8\right)=144\)
\(\Leftrightarrow2^x.9=144\)
\(\Leftrightarrow2^x=16\)\(\Leftrightarrow2^x=2^4\)
\(\Leftrightarrow x=4\)
Vậy \(x=4\)
mik k cho bạn rồi đó Hân
pls k cho mik
:((((((((((((((((((
bạn chọn c là sai đó