K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2023

Để giải bài toán này, ta sẽ sử dụng các công thức và quy tắc trong lượng giác để tính toán.

Trước hết, ta có: sin(α+β) = sinα.cosβ + cosα.sinβ cos(α+β) = cosα.cosβ - sinα.sinβ

Đề bài cho α+β = 1313 và tanα = -2tanβ. Ta có thể suy ra các thông tin sau: tanα = -2tanβ => sinα/cosα = -2sinβ/cosβ => sinα.cosβ = -2sinβ.cosα

Bài toán yêu cầu tính A = sin(α+3π/8) . cos(α+π/8) + sin(β-5π/12) . sin(β-π/12)

Để tính A, ta sẽ thay các giá trị đã biết vào công thức trên:

A = sin(α+3π/8) . cos(α+π/8) + sin(β-5π/12) . sin(β-π/12) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12))

Tuy nhiên, để tính giá trị chính xác của A, cần biết thêm giá trị cụ thể của α và β. Trong câu hỏi của bạn, không có thông tin về α và β, do đó không thể tính toán giá trị của A.

NV
26 tháng 6 2021

1.

Chắc đề là \(sin\left[\pi sin2x\right]=1?\)

\(\Leftrightarrow\pi.sin2x=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow sin2x=\dfrac{1}{2}+2k\) (1)

Do \(-1\le sin2x\le1\Rightarrow-1\le\dfrac{1}{2}+2k\le1\)

\(\Rightarrow-\dfrac{3}{4}\le k\le\dfrac{1}{4}\Rightarrow k=0\)

Thế vào (1)

\(\Rightarrow sin2x=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{6}+n2\pi\\2x=\dfrac{5\pi}{6}+m2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+n\pi\\x=\dfrac{5\pi}{12}+m\pi\end{matrix}\right.\)

NV
26 tháng 6 2021

2.

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{2}cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{\pi}{4}+k2\pi\\\dfrac{\pi}{2}cos\left(x-\dfrac{\pi}{4}\right)=-\dfrac{\pi}{4}+k_12\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}+4k\\cos\left(x-\dfrac{\pi}{4}\right)=-\dfrac{1}{2}+4k_1\end{matrix}\right.\) (2)

Do \(-1\le cos\left(x-\dfrac{\pi}{4}\right)\le1\Rightarrow\left\{{}\begin{matrix}-1\le\dfrac{1}{2}+4k\le1\\-1\le-\dfrac{1}{2}+4k_1\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}k=0\\k_1=0\end{matrix}\right.\)

Thế vào (2):

\(\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\\cos\left(x-\dfrac{\pi}{4}\right)=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\) chắc bạn tự giải tiếp được

11 tháng 9 2023

a) \(sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=-sin\left(x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{3}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-x+k\pi\\2x+\dfrac{\pi}{6}=\pi-\dfrac{\pi}{3}+x+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

b) \(sin\left(2x-\dfrac{\pi}{3}\right)-cos\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=cos\left(x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=sin\left(\dfrac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k\pi\\2x-\dfrac{\pi}{3}=\pi-\dfrac{\pi}{6}+x+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{7\pi}{6}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{\pi}{6}+\left(k+1\right)\pi\end{matrix}\right.\)

c: =>\(cos\left(x-\dfrac{pi}{6}\right)=-sin\left(2x+\dfrac{pi}{3}\right)\)

=>\(cos\left(x-\dfrac{pi}{6}\right)=sin\left(-2x-\dfrac{pi}{3}\right)\)

=>\(sin\left(-2x-\dfrac{pi}{3}\right)=sin\left(\dfrac{pi}{2}-x+\dfrac{pi}{6}\right)\)

=>\(sin\left(-2x-\dfrac{pi}{3}\right)=sin\left(-x+\dfrac{2}{3}pi\right)\)

=>\(\left[{}\begin{matrix}-2x-\dfrac{pi}{3}=-x+\dfrac{2}{3}pi+k2pi\\-2x-\dfrac{pi}{3}=pi+x-\dfrac{2}{3}pi+k2pi\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}-x=pi+k2pi\\-3x=\dfrac{2}{3}pi+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-pi-k2pi\\x=-\dfrac{2}{9}pi-\dfrac{k2pi}{3}\end{matrix}\right.\)

15 tháng 6 2021

1.a) \(4cos\dfrac{\alpha}{2}.cos\dfrac{\beta}{2}.cos\dfrac{f}{2}\)

\(=\dfrac{1}{2}.4\left[cos\left(\dfrac{\alpha-\beta}{2}\right)+cos\left(\dfrac{\alpha+\beta}{2}\right)\right].cos\dfrac{f}{2}\)

\(=2.cos\left(\dfrac{\alpha-\beta}{2}\right)cos\dfrac{f}{2}+2.cos\left(\dfrac{\alpha+\beta}{2}\right).cos\dfrac{f}{2}\)

\(=cos\left(\dfrac{\alpha-\left(\beta+f\right)}{2}\right)+cos\left(\dfrac{\alpha-\beta+f}{2}\right)+cos\left(\dfrac{\alpha+\beta-f}{2}\right)+cos\left(\dfrac{\alpha+\beta+f}{2}\right)\)

\(=cos\left(\dfrac{2\alpha-\pi}{2}\right)+cos\left(\dfrac{\pi-2\beta}{2}\right)+cos\left(\dfrac{\pi-2f}{2}\right)+cos\left(\dfrac{\pi}{2}\right)\)

\(=cos\left(-\dfrac{\pi}{2}+\alpha\right)+cos\left(\dfrac{\pi}{2}-\beta\right)+cos\left(\dfrac{\pi}{2}-f\right)\)

\(=sin\alpha+sin\beta+sinf\) (đpcm)

15 tháng 6 2021

a2) \(1+4sin\dfrac{\alpha}{2}.sin\dfrac{\beta}{2}.sin\dfrac{f}{2}\)

\(=1+2\left[cos\left(\dfrac{\alpha-\beta}{2}\right)-cos\left(\dfrac{\alpha+\beta}{2}\right)\right].sin\dfrac{f}{2}\)

\(=1+2.cos\left(\dfrac{\alpha-\beta}{2}\right).sin\dfrac{f}{2}-2.cos\left(\dfrac{\alpha+\beta}{2}\right).sin\dfrac{f}{2}\)

\(=1+sin\left(\dfrac{f-\alpha+\beta}{2}\right)+sin\left(\dfrac{a-\beta+f}{2}\right)-sin\left(\dfrac{f-\left(\alpha+\beta\right)}{2}\right)-sin\left(\dfrac{\alpha+\beta+f}{2}\right)\)

\(=1+sin\left(\dfrac{\pi-2\alpha}{2}\right)+sin\left(\dfrac{\pi-2\beta}{2}\right)-sin\left(\dfrac{2f-\pi}{2}\right)-sin\left(\dfrac{\pi}{2}\right)\)

\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+sin\left(\dfrac{\pi}{2}-\beta\right)+sin\left(\dfrac{\pi}{2}-f\right)\)

\(=cos\alpha+cos\beta+cosf\) (đpcm)

NV
22 tháng 3 2021

a.

\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)

b.

\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)

c.

\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)

1: cos(2x+pi/6)=cos(pi/3-3x)

=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=3x-pi/3+k2pi

=>5x=pi/6+k2pi hoặc -x=-1/2pi+k2pi

=>x=pi/30+k2pi/5 hoặc x=pi-k2pi

2: sin(2x+pi/6)=sin(pi/3-3x)

=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=pi-pi/3+3x+k2pi

=>5x=pi/6+k2pi hoặc -x=2/3pi-pi/6+k2pi

=>x=pi/30+k2pi/5 hoặc x=-1/2pi-k2pi

6 tháng 9 2023

1) \(cos\left(2x+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{3}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-3x+k2\pi\\2x+\dfrac{\pi}{6}=-\dfrac{\pi}{3}+3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{3}-\dfrac{\pi}{6}+k2\pi\\3x-2x=\dfrac{\pi}{3}+\dfrac{\pi}{6}-k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\) \(\left(k\in N\right)\)

a: VT=sin^2a(sin^2a+cos^2a)+cos^2a

=sin^2a+cos^2a

=1=VP

b: \(VT=\dfrac{sina+sina\cdot cosa+sina-sina\cdot cosa}{1-cos^2a}=\dfrac{2sina}{sin^2a}=\dfrac{2}{sina}=VP\)

c: \(VT=\dfrac{sin^2a+1+2cosa+cos^2a}{sina\left(1+cosa\right)}\)

\(=\dfrac{2\left(cosa+1\right)}{sina\left(1+cosa\right)}=\dfrac{2}{sina}=VP\)

5 tháng 9 2021

1, \(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+cosx-cos3x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+cosx+sin3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{2sin2x.cosx+cosx}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{cosx\left(2sin2x+1\right)}{1+2sin2x}=\dfrac{2+2cos^2x}{5}\)

⇒ cosx = \(\dfrac{2+2cos^2x}{5}\)

⇔ 2cos2x - 5cosx + 2 = 0

⇔ \(\left[{}\begin{matrix}cosx=2\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

⇔ \(x=\pm\dfrac{\pi}{3}+k.2\pi\) , k là số nguyên

2, \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\left(1+cot2x.cotx\right)=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cos2x.cosx+sin2x.sinx}{sin2x.sinx}=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cosx}{sin2x.sinx}=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2cosx}{2cosx.sin^4x}=0\)

⇒ \(48-\dfrac{1}{cos^4x}-\dfrac{1}{sin^4x}=0\). ĐKXĐ : sin2x ≠ 0 

⇔ \(\dfrac{1}{cos^4x}+\dfrac{1}{sin^4x}=48\)

⇒ sin4x + cos4x = 48.sin4x . cos4x

⇔ (sin2x + cos2x)2 - 2sin2x. cos2x = 3 . (2sinx.cosx)4

⇔ 1 - \(\dfrac{1}{2}\) . (2sinx . cosx)2 = 3(2sinx.cosx)4

⇔ 1 - \(\dfrac{1}{2}sin^22x\) = 3sin42x

⇔ \(sin^22x=\dfrac{1}{2}\) (thỏa mãn ĐKXĐ)

⇔ 1 - 2sin22x = 0

⇔ cos4x = 0

⇔ \(x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)

 

5 tháng 9 2021

3, \(sin^4x+cos^4x+sin\left(3x-\dfrac{\pi}{4}\right).cos\left(x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)

⇔ \(\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

⇔ \(1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{3}{2}=0\)

⇔ \(\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{1}{2}-\dfrac{1}{2}sin^22x=0\)

⇔ sin2x - sin22x - (1 + cos4x) = 0

⇔ sin2x - sin22x - 2cos22x = 0

⇔ sin2x - 2 (cos22x + sin22x) + sin22x = 0

⇔ sin22x + sin2x - 2 = 0

⇔ \(\left[{}\begin{matrix}sin2x=1\\sin2x=-2\end{matrix}\right.\)

⇔ sin2x = 1

⇔ \(2x=\dfrac{\pi}{2}+k.2\pi\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)

4, cos5x + cos2x + 2sin3x . sin2x = 0

⇔ cos5x + cos2x + cosx - cos5x = 0

⇔ cos2x + cosx = 0

⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}=0\)

⇔ \(cos\dfrac{3x}{2}=0\)

⇔ \(\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\)

⇔ x = \(\dfrac{\pi}{3}+k.\dfrac{2\pi}{3}\)

Do x ∈ [0 ; 2π] nên ta có \(0\le\dfrac{\pi}{3}+k\dfrac{2\pi}{3}\le2\pi\)

⇔ \(-\dfrac{1}{2}\le k\le\dfrac{5}{2}\). Do k là số nguyên nên k ∈ {0 ; 1 ; 2}

Vậy các nghiệm thỏa mãn là các phần tử của tập hợp 

\(S=\left\{\dfrac{\pi}{3};\pi;\dfrac{5\pi}{3}\right\}\)

20 tháng 5 2021

.jkilfo,o7m5ijk

15 tháng 6 2021

 Ta có \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin 5\alpha -2\sin \alpha .\cos 4\alpha -2\sin \alpha .\cos 2\alpha

=\sin 5\alpha -\left(\sin 5\alpha -\sin 3\alpha \right)-\left(\sin 3\alpha -\sin \alpha \right)

=\sin \alpha .

Vậy \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin \alpha

29 tháng 7 2023

\(sin\left(x\right)+\left[sin\left(x+\dfrac{2\pi}{5}\right)-sin\left(x+\dfrac{\pi}{5}\right)\right]+\left[sin\left(x+\dfrac{4\pi}{5}\right)-sin\left(x+\dfrac{3\pi}{5}\right)\right]\)

\(=sin\left(x\right)+2cos\left(x+\dfrac{3\pi}{10}\right)sin\left(\dfrac{\pi}{10}\right)+2cos\left(x+\dfrac{7\pi}{10}\right)sin\left(\dfrac{\pi}{10}\right)\)

\(=sin\left(x\right)+2sin\left(\dfrac{\pi}{10}\right)\left[cos\left(x+\dfrac{3\pi}{10}\right)+cos\left(x+\dfrac{7\pi}{10}\right)\right]\)

\(=sin\left(x\right)+4sin\left(\dfrac{\pi}{10}\right)cos\left(\dfrac{\pi}{5}\right)cos\left(x+\dfrac{\pi}{2}\right)\)

\(=sin\left(x\right)+cos\left(x+\dfrac{\pi}{2}\right)\)

\(=sin\left(x\right)+cos\left(x\right)cos\left(\dfrac{\pi}{2}\right)-sin\left(x\right)sin\left(\dfrac{\pi}{2}\right)\)

\(=sin\left(x\right)-sin\left(x\right)\)

\(=0\)