Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/10>3/15
3/11>3/15
3/12>3/15
3/13>3/15
3/14>3/15
=>S>3/15*5=15/15=1
3/11<3/10
3/12<3/10
3/13<3/10
3/14<3/10
=>3/11+3/12+3/13+3/14+3/10<3/10*5=15/10=3/2<2
=>1<S<2
S = 3/10 + 3/11 + 3/12 + 3/13 + 3/14 > 3/15 + 3/15 + 3/15 + 3/15 + 3/15 = 15/15 = 1
=> 1 < S = 3/10 + 3/11 + 3/12 + 3/13 + 3/14 < 3/10 + 3/10 + 3/10 + 3/10 + 3/10 = 20/10 = 2
=> 1 < S < 2 (điều cần chứng minh)
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{9}+\frac{3}{9}+\frac{3}{9}+\frac{3}{9}+\frac{3}{9}=\frac{15}{9}< \frac{18}{9}=2\)
Suy ra đpcm.
- 3/10 +3/11 +3/12 +3/13 +3/14 > 3/15 + 3/15 +3/15 +3/15 +3/15 = 15/15 =1
S < 3/10 +3/10 +3/10 + 3/10 + 3/10 = 15/ 10 < 20/10 =2
\(S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
\(\Rightarrow S< \dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}\)
\(\Rightarrow S< \dfrac{15}{10}< 2\)
Lại có \(S>\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}\)
\(\Rightarrow S>\dfrac{15}{14}>1\)
\(\Rightarrow1< S< 2\)
Ta có: S =3/10+3/11+3/12+3/13+3/14 = 3.(1/10+1/11+1/12+1/13+1/14) > 3.(1/15 + 1/15 + 1/15 + 1/15 + 1/15) = 3.5/15 = 1 => S > 1 (1)
S=3/10+3/11+3/12+3/13+3/14 = 3.(1/10+1/11+1/12+1/13+1/14) < 3.(1/10 + 1/10 + 1/10 + 1/10 + 1/10) = 3.5/10 = 3/2<2 =>S <2 (2)
Từ (1) va (2)
=> 1 < S < 2 (đpcm).
Chúc bạn học tập tốt :)
Mọi người tk mình đi!
Cảm ơn nhiều nha!!!!!!!!!!!!!!!!!!!!!!!!
???...!!!