Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
\(S=1+2+2^2+2^3+2^4+2^5+2^6+2^7\)
\(\Rightarrow S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)
\(\Rightarrow S=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)
\(\Rightarrow S=\left(1+2\right)\left(1+2^2+2^4+2^6\right)\)
\(\Rightarrow S=3\left(1+2^2+2^4+2^6\right)⋮3\)
\(S=3+3^2+3^3+3^4+...+3^{30}\\ \Rightarrow S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\\ \Rightarrow S=\left(3+3^2+3^3\right)+3^3\left(3+3^2+3^3\right)+...+3^{27}\left(3+3^2+3^3\right)\\ \Rightarrow S=\left(3+3^2+3^3\right)\left(1+3^3+...+3^{27}\right)\\ \Rightarrow S=39\left(1+3^3+...+3^{27}\right)⋮39\)
\(S=3\left(1+3+3^2\right)+...+3^{28}\left(1+3+3^2\right)\)
\(=3\left(1+3+3^2\right)\left(1+...+3^{27}\right)\)
\(=39\left(1+..+3^{27}\right)⋮39\)
S=(5+52)+(53+54)+....+(52017+52018)
= 30+52(5+52)+....+52016(5+52)
=30+30.52+....+30.52016
vì từng số hạng của S chia hết cho 30 nên S chia hết cho 30
S = 5 + 52 + 53 + 54 + .......... + 599
a) S = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) + .... + ( 597 + 598 + 599 )
= 5. ( 1 + 5 + 52 ) + 54 . ( 1 + 5 + 52 ) + .... + 597 . ( 1 + 5 + 52 )
= ( 1 + 5 + 52 ). ( 5 + 54 + .. + 597 )
= 31 . ( 5 + 54 + .... + 597 ) chia hết cho 31 ( đpcm )
c ) 5S = 52 + 53 + .. + 5100
=> 5S - S = 4S = 5100 + 599 + ........ + 53 + 52 - 5 - 52 - 53 - ..... - 599
= 5100 - 5
25x - 5 = 4S
=> 25x - 5 = 5100 - 5
=> 25x = 5100
=> 25x = ( 52 )50
=> 25x = 2550
=> x = 50
Vậy x = 50
Câu b quên cách làm rồi
a) S=5+52+53+54+...+599
=(5+52+53)+(54+55+56)+...+(597+598+599)
=5(1+5+52)+54(1+5+52)+...+597(1+5+52)
=5.31+54.31+...+597.31
=31(5+54+...+597)⋮31(đpcm)
b) S=5+52+53+54+...+599
=5+(52+53)+(54+55)+...+(598+599)
=5+5(5+52)+53(5+52)+...+597(5+52)
=5+5.30+53.30+...+597.30
=5+30.(5+53+...+597)
Mà 5⋮̸30 nên S⋮̸30(đpcm)
c) Ta có: 5S=52+53+54+55+...+5100
5S−S=(52+53+54+55+...+5100)−(5+52+53+54+...+599)
4S=5100−5
⇒25x−5=5100−5
⇒25x=5100
⇒25x=2550
⇒x=50
Cho 2 dễ rồi bạn tự làm nhé
Cho 5
2 + 2^2 + .... + 2^ 30
(2 + 2^3 ) + ( 2^ 2 + 2^ 4) + ..... = ( 2^28 + 2^30 )
2( 1 + 4 ) + 2^2 ( 1 + 4 ) +...... + 2^28 ( 1+ 4 )
2. 5 + ..... + 2^ 28 . 5
5( 2 + >.. + 2^ 28 ) chia hết cho 5