K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2014

a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)

S=(2+22)(1+22+24+....+298)

s=6(1+22+24+....+298)

Vi 6 chia het cho 3.Suyra S chia het cho 3

Moi cac ban xem tiep phan sau vao ngay mai

18 tháng 12 2014

a. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)

=2.3+2^3.3+2^5.3+...+2^99.3

=3.(2+2^2+2^5+...+2^99)

=> 3 chia hết cho 3 

b. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)

=2.15+2^5.15+2^9.15+...+2^96.15

=> S chia hết cho 15 

 

28 tháng 8 2016

a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)

\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)

\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)

Vậy \(S⋮5\)

28 tháng 8 2016

a) Ta có:

\(S=2+2^3+2^5+...+2^{99}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)

\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)

\(S=2.5+2^3.5+...+2^{97}.5\)

\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)

\(\Rightarrow S⋮5\)

 

29 tháng 9 2018

a) \(S=1+3+3^2+3^3+...+3^{49}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)

\(=1\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)

\(=1.4+3^2.4+...+3^{48}.4\)

\(=\left(3+1\right)\left(1+3^2+...3^{48}\right)=4\left(1+3^2+...+3^{48}\right)⋮4^{\left(đpcm\right)}\)

b) Ta có: \(S=1+3+3^2+3^3+...+3^{49}\)

\(3S=3+3^2+3^3+...+3^{49}+3^{50}\)

\(3S-S=2S=3^{50}-1\Rightarrow S=\frac{3^{50}-1}{2}\)

Ta thấy: \(3^{50}=3^{4.12}.3^2=\left(3^4\right)^{12}.3^2=81^{12}.9=...9\) (tận cùng là 9)

Suy ra \(3^{50}-1=\left(...9\right)-1=...8\) (tận cùng là 8)

Suy ra \(\Rightarrow S=\frac{3^{50}-1}{2}=\frac{\left(...8\right)}{2}=...4\Rightarrow S\) tận cùng là 4

24 tháng 10 2018

a) \(S=1+3+3^2+3^3+...+3^{49}\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+....+\left(3^{48}+3^{49}\right)\)

\(S=4+\left(3^2.1+3^2.3\right)+....+\left(3^{48}.1+3^{48}.3\right)\)

\(S=4+3^2.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)

\(S=1.4+3^2.4+...+3^{48}.4\)

\(S=\left(1+3^2+...+3^{48}\right).4⋮4\)