Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B=\(\frac{2}{4^2}+\frac{2}{6^2}+\frac{2}{8^2}+....+\frac{2}{2008^2}\)
=> A+B= 2\(\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2007^2}+\frac{1}{2008^2}\right)\) <2 \(\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{2006\cdot2007}+\frac{1}{2007\cdot2008}\right)\)
=2\(\left(\frac{1}{2}-\frac{1}{2008}\right)\)=\(\frac{2006}{2008}\)
mà A<B=>A+A<A+B=2006/2008
=>A<1003/2008
mấy câu kia cũng tương tự, mình làm biếng quá
link đây bạn vô coi nha : https://vn.answers.yahoo.com/question/index?qid=20100803193929AAXErh4
chúc bạn học tốt
Câu trả lời hay nhất: s1=1+2, s2=3+4+5
Để ý thì s2 có 3 chữ số, số cuối là 5, mà 2+3=5
Tương tự thì số cuối của s3=2+3+4=9
Theo quy luật trên, số cuối s100 =2+3+4+...+101=5050
Vậy số cuối cùng của s100 là 5050
Vậy số đầu tiên của s100=5050-101=4949
Vậy s100=4949+4950+4951+...+5050
Bài 1:
a: \(2P=2^{101}-2^{100}+2^{98}-2^{97}+...+2^3-2^2\)
=>\(3P=2^{101}-2\)
hay \(P=\dfrac{2^{101}-2}{3}\)
b: \(5Q=5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2+5\)
=>\(6Q=5^{101}+1\)
hay \(Q=\dfrac{5^{101}+1}{6}\)
Sửa đề : S= -1/2-1/3-1/4-.....-1/20 + 3/2 + 4/3 + 5/4 + ... + 21/20 . Tính S
\(S=\left(\frac{3}{2}-\frac{1}{2}\right)+\left(\frac{4}{3}-\frac{1}{3}\right)+\left(\frac{5}{4}-\frac{1}{4}\right)+...+\left(\frac{21}{20}-\frac{1}{20}\right)\)
\(S=1+1+1+...+1\)( 20 số 1 )
\(S=20\)
\(\text{Nhân S với 4 ta được :}\)
\(\text{4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)}\)
\(\text{Ta }co\)
4/(5x5) < 4/(3x7) = 1/3 – 1/7
4/(9x9) < 4/(7x11) = 1/7 – 1/11
4/(409x409) < 4/(407x411) = 1/407 – 1/411
Mà :
\(\text{4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411}\)
4S < 136/411
S < 34/411 < 34/408 = 1/12
Hay S < 1/12