Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
Ghép 4 số thành một cặp nha
Bởi vì \(1-3+3^2-3^3=-20\) mà -20 chia hết cho 20
Cứ ghép như thế các tổng nhỏ chia hết cho 20 thì khi cộng vào tổng lớn sẽ chia hết cho 20, lười làm như bạn, hướng dẫn thôi
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(\Rightarrow S=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(\Rightarrow S=-20+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(\Rightarrow S=-20+...+3^{96}.-20\)
\(\Rightarrow S=-20.\left(1+...+3^{96}\right)⋮20\)
\(\Rightarrow S⋮20\left(đpcm\right)\)
A=2+22+23+24+...+212
A=(2+22+23)+(24+25+26)+...+(210+211+212)
A=14.1+23.14+...+29.14
A=14(1+23+...+29)\(⋮\)7
Vậy A\(⋮\)7
\(A=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)=7\cdot\left(2+...+2^{10}\right)⋮7\)
\(A=2+2^2+2^3+....+2^{12}\\ \Rightarrow A=\left(2+2^2+2^3\right)+.....+\left(2^{10}+2^{11}+2^{12}\right)\\ \Rightarrow A=2.\left(1+2+2^2\right)+....+2^{10}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+....+2^{10}.7\\ \Rightarrow A=7\left(2+....+2^{10}\right)⋮7\)
Ta có: 21995=21990. 25= 21990. 32
Mà 32 chia 31 dư 1 nên 32. 21990 chia 31 dư 1
=> 32. 21990 -1 chia hết cho 31
=> 21995-1 chia hết cho 31.
1) S = 1 + 2 + 22 + ... + 2100 (có 100 số; 100 chia hết cho 2)
S = (1 + 2) + (22 + 23) + ... + (299 + 2100)
S = 3 + 2.(1 + 2) + ... + 299.(1 + 2)
S = 3 + 2.3 + ... + 299.3
S = 3.(1 + 2 + ... + 299) chia hết cho 3 (đpcm)
2) Cách 1: là nhân S với 2 r` tìm ra S = 2100 - 1 và tìm ra c/s tận cùng của S là 5, chia hết cho 5
Cách 2: nhóm 4 số và lm như trên
C) Để thừa ra số 1 đầu tiên, nhóm 3 số típ theo lại, như thế (lm như câu 1)
KQ: S chia 7 dư 1