Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
5 = (x^2+x-2)/(x^2-x-2)
vì x khác 0, rút gọn tử và mẫu cho x
=> 5 = (x + 1 - 2/x)/(x - 1 -2/x)
đặt t = x - 2/x
=> 5 = (t + 1)/(t - 1)
<=> t + 1 =5t - 5 <=> t = 3/2
với t = 3/2 => x - 2/x = 3/2
giải tìm dc 2 giá trị của x, thay vào K.
Rồi tự làm nha bn ra KQ nha
đáp án của nó là số thập phân cơ cậu ạ ~
Phần ghi đáp án nó bảo thế :))
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
5 = (x^2+x-2)/(x^2-x-2)
vì x khác 0, rút gọn tử và mẫu cho x
=> 5 = (x + 1 - 2/x)/(x - 1 -2/x)
đặt t = x - 2/x
=> 5 = (t + 1)/(t - 1)
<=> t + 1 =5t - 5 <=> t = 3/2
với t = 3/2 => x - 2/x = 3/2
giải tìm dc 2 giá trị của x, thay vào K
Ta có \(P=\frac{x^2+y\left(x+y\right)}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}.\frac{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)\(=x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=5;xy=-\frac{1}{2}\Rightarrow P=5^2-2.\left(-\frac{1}{2}\right)=26\)
Vậy P=26