Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=x+y,b=y+z,c=z+x\)
Khi đó nếu P = Q tức là \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Từ đó bạn suy ra nhé ! ^^
P/s: Em mới lớp 7 thôi nên có gì sai mong anh/chị thông cảm ạ.
Khai triển ra ta được: \(Q=x^2+y^2+z^2+3\left(xy+xz+yz\right)\)
\(P=2\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\)
Do P = Q nên P - Q = 0.Hay:\(x^2+y^2+z^2-xy-yz-zx=0\)
Nhân 2 vào hai vế suy ra \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}}\) .Suy ra \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
Dấu "=' xảy ra khi x = y = z (đpcm)
chứng minh ngược lại bạn ơi
chứng minh x=y=z thì p=q
Đặt \(x+y=a;y+z=b;z+x=c\)thì P=Q có nghĩa là:
\(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)
\(\Leftrightarrow a=b=c\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\)
\(P=Q\) thì \(x=y=z\) lật lại là \(x=y=z\) thì \(P=Q\) ta thay vào xem nó đúng thật ko nhé :v
Với \(x=y=z\) thì \(P=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)
\(=\left(x+x\right)^2+\left(x+x\right)^2+\left(x+x\right)^2\)
\(=\left(2x\right)^2+\left(2x\right)^2+\left(2x\right)^2=4x^2+4x^2+4x^2=12x^2\)
Với \(x=y=z\) thì \(Q=\left(x+y\right)\left(y+z\right)+\left(y+z\right)\left(x+z\right)+\left(x+z\right)\left(x+y\right)\)
\(=\left(x+x\right)\left(x+x\right)+\left(x+x\right)\left(x+x\right)+\left(x+x\right)\left(x+x\right)\)
\(=2x\cdot2x+2x\cdot2x+2x\cdot2x\)
\(=4x^2+4x^2+4x^2=12x^2\)
Rõ rằng là bằng nhau rồi tức là điều trên cũng đúng hay ta có ĐPCM
thank bạn