K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

Giải:

Giả sử \(P\left(x\right)=ax^6+bx^5+cx^4+dx^3+ex^2+fx+g\)

Ta có:

\(P\left(1\right)=P\left(-1\right)\)

\(\Rightarrow a+b+c+d+e+f+g=a-b+c-d+e-f+g\)

\(\Rightarrow b+d+f=0\left(1\right)\)

Tương tự:

\(P\left(2\right)=P\left(-2\right)\)

\(\Rightarrow2^5b+2^3d+2f=-2^5b-2^3d-2f\)

\(\Rightarrow16b+4d+f=0\left(2\right)\)

\(P\left(3\right)=P\left(-3\right)\)

\(\Rightarrow3^5b+3^3d+3f=-3^5b-3^3d-3f\)

\(\Rightarrow3^4b+3^2d+f=0\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\)\(\left(3\right)\)

Suy ra \(b=d=f=0\)

\(\Rightarrow P\left(x\right)\) là đa thức chỉ có bậc chẵn

Vậy \(P\left(x\right)=P\left(-x\right)\)

29 tháng 3 2017

mình không hiểu cho lắm :/

1 tháng 7 2015

Giả sử \(P\left(x\right)=ax^6+bx^5+cx^4+dx^3+ex^2+fx+g\)

\(P\left(1\right)=P\left(-1\right)\Rightarrow a+b+c+d+e+f+g=a-b+c-d+e-f+g\)

\(\Rightarrow b+d+f=0\)(1)

Tương tự; \(P\left(2\right)=P\left(-2\right)\Rightarrow2^5b+2^3d+2f=-2^5b-2^3d-2f\)

\(\Rightarrow16b+4d+f=0\)(2)

\(P\left(3\right)=P\left(-3\right)\Rightarrow3^5b+3^3d+3f=-3^5b-3^3d-3f\)

\(\Rightarrow3^4b+3^2d+f=0\)(3)

Từ 1,2,3 suy ra \(b=d=f=0\)

Suy ra P(x) là đa thức chỉ có bậc chẵn => P(x) = P(-x) với mọi x thuộc R

19 tháng 3 2018

đúng rồi

21 tháng 10 2018

Ta có: f(x)=ax2+bx+c

Vì f(5)=f(-5) nên 25a2+5b+c=25a2-5b+c

=> 5b=-5b; 5b+5b=0 ; 10b=0 ;b=0

Vậy f(x)=ax2+c.Ta có f(-x)=a(-x)2+c=ax2+c

Vì vậy f(x)=f(-x)

Hok tốt!

6 tháng 7 2017

f(x) = ax2 + bx + c

vì f(5) = f(-5) nên 25a2 + 5b + c = 25a2 - 5b + c

suy ra : 5b = -5b ; 5b + 5b = 0 ; 10b = 0 ; b = 0

Vậy f(x) = ax2 + c .

Ta có f(-x) = a(-x)2 + c = ax2 + c

do đó f(x) = f(-x)

2 tháng 12 2017

f(x) = ax
2 + bx + c
vì f(5) = f(-5) nên 25a
2 + 5b + c = 25a
2
- 5b + c
suy ra : 5b = -5b ; 5b + 5b = 0 ; 10b = 0 ; b = 0
Vậy f(x) = ax
2 + c .
Ta có f(-x) = a(-x)2 + c = ax
2 + c
do đó f(x) = f(-x)