Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a, bn chỉ cần thay m =-2 vào pt là đc
b, thay x=-2 vào pt tac đc 4+6m+m^2-3m=0
m^2+3m+4=0
m=-1 và m=-4
với m=-1 thì x=2 với m=-4 thì vo nghiệm
vậy nghiệm còn lại là 2
c bn sd đen ta ' là đc
d - bn viết hệ thức viet
x1^2+x2^2=8
(X1+x2)^2-2x1.x2=8
- thay viet vào
*,với m=-2 thì bạn thay vào pt rồi giải như thường nha
*,\(\Delta\)=[-2(m+1)]2-4(2m-4)=4(m2+2m+1)-8m+16=4m2+8m +4-8m+16=4m2+20>0
=> phương trình luôn có 2 nghiệm phân biệt
*, theo hệ thức Vi et x1+x2=2(m+1);x1x2=2m-4
Ta có A=(x1+x2)2-2x1x2
Bạn thay vào rồi tính ra đc A=4m2+4m +12=(2m)2+4m+1+11=(2m+1)2+11 lớn hơn hoặc = 11
dấu = xảy ra khi 2m+1=0=> m=-1/2
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
b) \(\Delta=4-4\left(-m\right)=4+4m\). pt có nghiệm <=> \(\Delta\ge0\Leftrightarrow4+4m\ge0\Leftrightarrow m\ge-1\)
pt có nghiệm với mọi m>=-1 => áp dụng hệ thức vi ét ta có: \(x1+x2=-2\); \(x1.x2=-m\);
\(x1^4+x2^4=\left(x1+x2\right)^4-4x1^3x2-6x1^2x^2_2-4x1x2^3=16-2x1.x2\left(2x^2+3x1.x2+2x^2_2\right)\)
\(=16+2m\left[2\left(x1^2+2x1.x2+x2^2\right)-x1.x2\right]=16+2m\left[2\left(x1+x2\right)^2+m\right]=16+2m.4+2m^2=2m^2+8m+16\)
\(=2\left(m^2+4m+8\right)=2\left(m^2+4m+4+4\right)=2\left(m+2\right)^2+8\)
\(m\ge-1\Rightarrow m+2\ge1\Leftrightarrow2\left(m+2\right)^2+8\ge10\)=> Min P=10 <=> m=-1
Sao ở khúc 16 + 2m [2 (x1 + x2) ^ 2 + m] = 16 + 2*4 +2m vậy?
ta có:
\(\Delta b^2-4ac=4\left(m-1\right)^2-4\left(2m-4\right)=4m^2-8m+4-8m+16\)
\(=4m^2-16m+20=\left(2m-4\right)^2+4>0\)
=>pt luôn có 2 nghiệm phân biệt
=>đpcm
theo viet ta có:
x1+x2=2m-2
x1.x2=2m-4
x12+x22=(x1+x2)2-2x1.x2
=(2m-2)2-2(2m-4)
=4m2-8m+4-4m+8
=4m2-12m+12
=(2m-3)2+3\(\ge\)3
Vậy Min A=x12+x22=3 khi m=3/2
c,để pt có 2 nghiệm đều dương
\(\Rightarrow\hept{\begin{cases}S>0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}2m-2>0\\2m-4>0\end{cases}\Leftrightarrow}m>2}\)
a
Xét \(\Delta'=m^2-m+2=m^2-m+\frac{1}{4}+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
=> pt có 2 nghiệm phân biệt với mọi giá trị m
b
Do phương trình có 2 nghiệm phân biệt nên theo Viete ta có:\(x_1+x_2=2m;x_1x_2=-2\)
Khi đó:\(x_1^2+x_2^2-x_1^2x_2^2-1\)
\(=\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1x_2\right)^2-1\)
\(=4m^2+4-4-1=4m^2-1\ge-1\)
Dấu "=" xảy ra tại m=0
Vậy............................................................
Ta có: \(\Delta=\left(2m-1\right)^2+7>0\forall x\)
Nên pt (1) có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có:
\(x_1+x_2=2m,x_1\cdot x_2=m-2\)
\(B=x_1^2+x_2^2-x_1^2\cdot x_2^2-1=\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1x_2\right)^2-1\)
Thay Vi-et và biến đổi ta có: \(B=\left(m+\frac{1}{3}\right)^2-\frac{4}{3}\ge\frac{-4}{3}\forall m\)
Xét dấu "=" xảy ra và kết luận
a. Phương trình có nghiệm \(x=-1\) nên:
\(\left(-1\right)^2-2\left(m-1\right).\left(-1\right)+m-5=0\)
\(\Leftrightarrow1+2m-2+m-5=0\)
\(\Leftrightarrow m=2\)
Khi đó: \(x_2=-\dfrac{c}{a}=-\dfrac{m-5}{1}=-\dfrac{2-5}{1}=3\)
b.
\(\Delta'=\left(m-1\right)^2-\left(m-5\right)=m^2-3m+6=\left(m-\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm phân biệt với mọi m
c.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(A=4\left(m-1\right)^2-2\left(m-5\right)\)
\(A=4m^2-10m+14=4\left(m-\dfrac{5}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
\(A_{min}=\dfrac{31}{4}\) khi \(m-\dfrac{5}{4}=0\Rightarrow m=\dfrac{5}{4}\)