K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi m=-2 thì phương trình trở thành \(x^2+2x-3=0\)

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)

Để phương trình có hai nghiệm phân biệt thì -4m+8>0

=>-4m>-8

hay m<2

Theo hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=-\dfrac{2}{3}\\x_1=2x_2=-\dfrac{4}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=m-1\)

\(\Leftrightarrow m-1=\dfrac{8}{9}\)

hay m=17/9(nhận)

4 tháng 2 2022

a. Thay m=-2 ta được: \(x^2+2x-2-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

b. Để phương trình (*) có 2 nghiệm phân biệt thì \(\Delta=4-4\left(m-1\right)>0\Leftrightarrow1>m-1\Leftrightarrow m< 2\)

Áp dụng định lí Vi-et ta có: \(x_1+x_2=\dfrac{-2}{1}=-2\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-\dfrac{4}{3}\\x_2=\dfrac{-2}{3}\end{matrix}\right.\)\(\Rightarrow x_1.x_2=\dfrac{m-1}{1}=\dfrac{-4}{3}.\dfrac{-2}{3}=m-1\Rightarrow m=\dfrac{17}{9}\)<2

Vậy m=\(\dfrac{17}{9}\)

 

a: Khi m=2 thì (1) trở thành \(x^2+2x-3=0\)

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

b: \(\text{Δ}=2^2-4\cdot\left(m-5\right)=4-4m+20=-4m+24\)

Để phương trình có hai nghiệm thì -4m+24>=0

=>-4m>=-24

hay m<=6

Theo đề, ta có: \(x_1x_2\left(x_1+x_2\right)=8\)

\(\Leftrightarrow-2\left(m-5\right)=8\)

=>m-5=-4

hay m=1(nhận)

12 tháng 8 2023

a) Khi m = 0 thì phương trình trở thành:

\(x^2+2\left(0-2\right)x-0^2=0\)

\(\Leftrightarrow x^2+2\cdot-2x-0=0\)

\(\Leftrightarrow x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

b) Ta có: 

\(\left|x_1\right|-\left|x_2\right|=6\)

\(\Leftrightarrow x^2_1+x_2^2-2\left|x_1x_2\right|=36\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=36\)

Mà: \(x_1+x_2=-2\left(m-2\right)=4-2m\)

\(x_1x_2=-m^2\)

\(\Leftrightarrow\left(4-2m\right)^2-2\cdot-m^2-2\cdot m^2=36\)

\(\Leftrightarrow16-16m+4m^2+2m^2-2m^2=36\)

\(\Leftrightarrow\left(4-2m\right)^2=6^2\)

\(\Leftrightarrow\left[{}\begin{matrix}4-2m=6\\4-2m=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2m=-2\\2m=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=5\end{matrix}\right.\)

Δ=(-2m)^2-4(m^2-m)

=4m^2-4m^2+4m=4m

Để (1) có 2 nghiệm phân biệt thì 4m>0

=>m>0

x1^2+x2^2=4-3x1x2

=>(x1+x2)^2-2x1x2=4-3x1x2

=>(2m)^2+m^2-m=4

=>4m^2+m^2-m-4=0

=>5m^2-m-4=0

=>5m^2-5m+4m-4=0

=>(m-1)(5m+4)=0

=>m=1 hoặc m=-4/5(loại)

14 tháng 3 2022

\(\Delta'=16-m\)Để pt có 2 nghiệm pb x1 ; x2 khi 

\(\Delta'>0\Leftrightarrow16-m>0\Leftrightarrow m< 16\)

Theo Vi et \(\hept{\begin{cases}x_1+x_2=8\left(1\right)\\x_1x_2=m\left(2\right)\end{cases}}\)

Ta có \(x_1-x_2=2\left(3\right)\)

Từ (1) ; (3) ta có hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1-x_2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=10\\x_2=x_1-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\)

Thay vào (2) ta được \(m=5.3=15\)

Δ=(2m-2)^2-4(-2m+5)

=4m^2-8m+4+8m-20=4m^2-16

Để PT có hai nghiệm phân biệt thì 4m^2-16>0

=>m>2 hoặc m<-2

x1-x2=-2

=>(x1-x2)^2=4

=>(x1+x2)^2-4x1x2=4

=>(2m-2)^2-4(-2m+5)=4

=>4m^2-8m+4+8m-20=4

=>4m^2=20

=>m^2=5

=>m=căn 5 hoặc m=-căn 5

NV
12 tháng 4 2021

\(\Delta'=1+m^2-1=m^2>0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2+1\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2-2x_1-m^2+1=0\Rightarrow x_1^3-2x_1^2-m^2x_1+x_1=0\)

\(\Rightarrow x_1^3-2x_1^2-m^2x_1=-x_1\)

Thế vào bài toán:

\(\left(2x_1-x_2\right)\left(-x_1+2x_2\right)=-3\)

\(\Leftrightarrow-2x_1^2-2x_2^2+5x_1x_2=-3\)

\(\Leftrightarrow-2\left(x_1+x_2\right)^2+9x_1x_2=-3\)

\(\Leftrightarrow-8+9\left(-m^2+1\right)=-3\)

\(\Leftrightarrow m^2=\dfrac{4}{9}\Rightarrow m=\pm\dfrac{2}{3}\)

30 tháng 5 2021

Thay m=-1 vào pt ta được: 

\(x^2+4x-5=0\)\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Có \(ac=-5< 0\) =>Pt luôn có hai nghiệm pb trái dấu

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\2x_1-x_2=11\\x_1x_2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_1-11=2\left(m-1\right)\\x_2=2x_1-11\\x_1x_2=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{3}\\x_2=\dfrac{4m-15}{3}\\x_1x_2=-5\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{2m+9}{3}\right)\left(\dfrac{4m-15}{3}\right)=-5\)\(\Leftrightarrow8m^2+6m-90=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{15}{4}\end{matrix}\right.\)

Vậy...