K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2020

\(x^2-x-1=0\)

Ta có \(\Delta=b^2-4ac=\left(-1\right)^2-4.1.\left(-1\right)=1+4=5>0\)\(\sqrt{\Delta}=\sqrt{5}\)

Phuông trình có 2 nghiệm phân biệt 

\(a=x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+\sqrt{5}}{2}\)

\(b=x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{1-\sqrt{5}}{2}\)

Ta có \(a^{2007}+b^{2007}+a^{2009}+b^{2009}\)

\(\Leftrightarrow a^{2007}.\left(1+a^2\right)+b^{2007}.\left(1+b^2\right)\)

\(\Leftrightarrow\left(\frac{1+\sqrt{5}}{2}\right)^{2007}.\left(1+\left(\frac{1+\sqrt{5}}{2}\right)^2\right)+\left(\frac{1-\sqrt{5}}{2}\right)^{2007}.\left(1+\left(\frac{1-\sqrt{5}}{2}\right)^2\right)\)

\(\Leftrightarrow\left(\frac{1+\sqrt{5}}{2}\right)^{2007}.\left(1+\frac{3+\sqrt{5}}{2}\right)+\left(\frac{1-\sqrt{5}}{2}\right)^{2007}.\left(1+\frac{3-\sqrt{5}}{2}\right)\)

\(\Leftrightarrow\left(\frac{1+\sqrt{5}}{2}\right)^{2007}.\left(\frac{5+\sqrt{5}}{2}\right)+\left(\frac{1-\sqrt{5}}{2}\right)^{2007}.\left(\frac{5-\sqrt{5}}{2}\right)\)

\(\Leftrightarrow\sqrt{5}.\left(\frac{1+\sqrt{5}}{2}\right)^{2008}+\sqrt{5}.\left(\frac{1-\sqrt{5}}{2}\right)^{2008}\)

\(\Leftrightarrow\sqrt{5}.\left[\left(\frac{1+\sqrt{5}}{2}\right)^{2008}+\left(\frac{1-\sqrt{5}}{2}\right)^{2008}\right]⋮5\)  (ĐPCM)

Nhớ k cho mình nhé 

14 tháng 5 2020

Đề yêu cầu chứng minh gì vậy bạn? Bạn kiểm tra lại đề

15 tháng 5 2020

đê yêu cầu CM  \(a^{2007}+b^{2007}+a^{2009}+b^{2009}\) chia hết cho 5

11 tháng 1 2019

Ta có:

\(a^{2006}+a^{2008}+b^{2006}+b^{2008}\ge2\left(a^{2007}+b^{2007}\right)\)

Dấu = xảy ra khi \(a=b=1\)

\(\Rightarrow S=a^{2009}+b^{2009}=2\)

3 tháng 1 2022

Bài 2:

Vì a,b là nghiệm PT nên \(\left\{{}\begin{matrix}30a^2-4a=2010\\30b^2-4b=2010\end{matrix}\right.\)

\(\Rightarrow N=\dfrac{a^{2008}\left(30a^2-4a\right)+b^{2008}\left(30b^2-4b\right)}{a^{2008}+b^{2008}}\\ \Rightarrow N=\dfrac{a^{2008}\cdot2010+b^{2008}\cdot2010}{a^{2008}+b^{2008}}=2010\)

3 tháng 1 2022

Bài 1:

Viét: \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)

\(M=\dfrac{2x_1^2+x_1x_2+2x_2^2}{x_1^2x_2+x_1x_2^2}=\dfrac{2\left(x_1+x_2\right)^2-3x_1x_2}{x_1x_2\left(x_1+x_2\right)}=\dfrac{2a^2-3a+3}{a^2-a}\)

NV
30 tháng 9 2020

Do \(\left\{{}\begin{matrix}a^{2008}\ge0\\b^{2008}\ge0\\c^{2008}\ge0\\a^{2008}+b^{2008}+c^{2008}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^{2008}\le1\\b^{2008}\le1\\c^{2008}\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{matrix}\right.\)

\(\Rightarrow a^{2009}+b^{2009}+c^{2009}\le a^{2008}+b^{2008}+c^{2008}\)

\(\Rightarrow a^{2009}+b^{2009}+c^{2009}\le1\)

Dấu "=" xảy ra khi và chỉ khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

Khi đó \(a^{2007}+b^{2008}+c^{2009}+2020=1+2020=2021\)

13 tháng 2 2019

\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+y+z\right)+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+z\right)+y\left(z+x\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(z+y\right)=0\)

<=> x+y = 0 hoặc x+z=0 hoặc z+y=0

<=> x = -y hoặc x = -z hoặc z = -y

\(\Rightarrow P=\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)=0\)