Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=m^2-\left(m^2+2m-6\right)=-2m+6\)
a.
Pt có nghiệm khi \(-2m+6\ge0\Rightarrow m\le3\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2+2m-6\end{matrix}\right.\)
c.
\(x_1x_2=3x_1+3x_2-1\)
\(\Leftrightarrow x_1x_2=3\left(x_1+x_2\right)-1\)
\(\Leftrightarrow m^2+2m-6=3.2m-1\)
\(\Leftrightarrow m^2-4m-5=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=5>3\left(loại\right)\end{matrix}\right.\)
ĐK:`x_1,x_2 ne 0=>x_1.x_2 ne 0`
`=>-2m-1 ne 0=>m ne -1/2`
Ta có:`a=1,b=2m,c=-2m-1`
`=>a+b+c=1+2m-2m-1=0`
`<=>` \(\left[ \begin{array}{l}x=1\\x=-2m-1\end{array} \right.\)
PT có 2 nghiệm pn
`=>-2m-1 ne 1`
`=>-2m ne 2`
`=>m ne -1`
Nếu `x_1=1,x_2=-2m-1`
`pt<=>6=1+1/(-2m-1)`
`<=>5=1/(-2m-1)`
`<=>2m+1=-1/5`
`<=>2m=-6/5`
`<=>m=-3/5(tm)`
Nếu `x_2=1,x_1=-2m-1`
`pt<=>6/(-2m-1)=-2m-1+1=-2m`
`<=>6/(2m+1)=2m`
`<=>3/(2m+1)=m`
`<=>2m^2+m-3=0`
`a+b+c=0`
`=>m_1=1(tm),m_2=-c/a=-3/2(tm)`
Vậy `m in {-3/5,1,-3/2}` thì ....
\(\Delta'=m-1\ge0\Rightarrow m\ge1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
\(A=x_1^3+x_2^3-2\left(x_1+x_2\right)\)
\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-2\left(x_1+x_2\right)\)
\(=8m^3-3.2m\left(m^2-m+1\right)-4m\)
\(=2m^3+6m^2-10m\)
\(=2\left(m^3+3m^2-5m+1\right)-2\)
\(=2\left(m-1\right)\left[\left(m^2-1\right)+4m\right]-2\)
Do \(m\ge1\Rightarrow\left\{{}\begin{matrix}m-1\ge0\\\left(m^2-1\right)+4m>0\end{matrix}\right.\)
\(\Rightarrow2\left(m-1\right)\left[\left(m^2-1\right)+4m\right]\ge0\)
\(\Rightarrow A\ge-2\)
\(A_{min}=-2\) khi \(m=1\)
|x1|=3|x2|
=>|2m+2-x2|=|3x2|
=>4x2=2m+2 hoặc -2x2=2m+2
=>x2=1/2m+1/2 hoặc x2=-m-1
Th1: x2=1/2m+1/2
=>x1=2m+2-1/2m-1/2=3/2m+3/2
x1*x2=m^2+2m
=>1/2(m+1)*3/2(m+1)=m^2+2m
=>3/4m^2+3/2m+3/4-m^2-2m=0
=>m=1 hoặc m=-3
TH2: x2=-m-1 và x1=2m+2+m+1=3m+3
x1x2=m^2+2m
=>-3m^2-6m-3-m^2-2m=0
=>m=-1/2; m=-3/2
\(x^2-2mx+2m-1=0\)
\(\Delta'=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)
⇒ Phương trình có hai nghiệm .
Theo viét \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
Có : \(x_1^2-5x_1x_2+x^2_2=25\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=25\) \(\Leftrightarrow4m^2-14m+7=25\Leftrightarrow4m^2-14m-18=0\Leftrightarrow2m^2-7m-9=0\Leftrightarrow\left(2m-9\right)\left(m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{9}{2}\\m=-1\end{matrix}\right.\)
Vậy...
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
a.\(\Delta=\left(-4\right)^2-4.\left(1-2m\right)\)
\(=16-4+8m=12+8m\)
Để pt có 2 nghiệm thì \(12+8m>0\)
\(\Leftrightarrow m>-\dfrac{12}{8}\)
b. Theo hệ thức vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=1-2m\end{matrix}\right.\)
\(x_1^2+x^2_2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow4^2-2\left(1-2m\right)=6\)
\(\Leftrightarrow16-2+4m-6=0\)
\(\Leftrightarrow4m=-8\)
\(\Leftrightarrow m=-2\)
a, \(\Delta'=\left(-2\right)^2-\left(1-2m\right)=4-1+2m=2m-3\)
Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-3\ge0\Leftrightarrow m\ge\dfrac{3}{2}\)
b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=1-2m\end{matrix}\right.\)
\(x_1^2+x_2^2=6\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow4^2-2\left(1-2m\right)=6\\ \Leftrightarrow16-2+4m-6=0\\ \Leftrightarrow4m-8=0\\ \Leftrightarrow m=2\left(tm\right)\)
\(\Delta'=m^2+9>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo hệ thức Viet:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-9\end{matrix}\right.\)
Mặt khác do \(x_1\) là nghiệm nên: \(x_1^2-2mx_1-9=0\)
\(\Rightarrow x_1^2=2mx_1+9\)
\(\Rightarrow x_1^3=2mx_1^2+9x_1\)
Thế vào bài toán:
\(x_1^3+9x_2=0\)
\(\Leftrightarrow2mx_1^2+9x_1+9x_2=0\)
\(\Leftrightarrow2mx_1^2+9\left(x_1+x_2\right)=0\)
\(\Leftrightarrow2mx_1^2+18m=0\)
\(\Leftrightarrow2m\left(x_1^2+9\right)=0\)
\(\Leftrightarrow m=0\) (do \(x_1^2+9>0;\forall x_1\))
\(x^2-2mx+2m-3=0\left(1\right)\)
Để phương trình (1) có nghiệm thì:
\(\Delta\ge0\Rightarrow\left(-2m\right)^2-4\left(2m-3\right)\ge0\)
\(\Leftrightarrow4m^2-8m+12\ge0\)
\(\Leftrightarrow\left(2m-2\right)^2+8\ge0\) (luôn đúng)
Vậy \(\forall m\) thì phương trình (1) có nghiệm.
Theo định lí Viete ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-3\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-x_1x_2=3\)
\(\Rightarrow\left(x_1x_2-x_1-x_2+1\right)+2=0\)
\(\Rightarrow\left(x_1-1\right)\left(x_2-2\right)=-2\)
Vì x1, x2 là các số nguyên nên x1-1 , x2-1 là các ước số của -2. Lập bảng:
Với \(\left(x_1;x_2\right)=\left(3;0\right),\left(0;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}2m=0+3=3\\2m-3=0.3=0\end{matrix}\right.\Rightarrow m=\dfrac{3}{2}\)
Với \(\left(x_1;x_2\right)=\left(2;-1\right),\left(-1;2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2m=2-1=1\\2m-3=2.\left(-1\right)=-2\end{matrix}\right.\Rightarrow m=\dfrac{1}{2}\)
Vậy m=1/2 hay m=3/2 thì pt trên có 2 nghiệm là các số nguyên.