K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\Delta'=32>0\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)

Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)

\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)

Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\) 

 

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Lời giải:

a) Ta thấy:

\(\Delta'=(m+1)^2-2m=m^2+1\geq 1>0, \forall m\in\mathbb{R}\)

Do đó pt luôn có hai nghiệm phân biệt với mọi $m$

b) Áp dụng định lý Viete của pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)

Do đó: \(x_1+x_2-x_1x_2=2(m+1)-2m=2\) là một giá trị không phụ thuộc vào $m$

Ta có đpcm.

Bạn ghi lại đề đi bạn

Cái chỗ giữa 2(m-2)x và m2 là dấu gì bạn ơi?

5 tháng 4 2022

Chuyên gia có khác thấy cái j sai luôn

Sửa đề: x^2+2(m-2)x+m^2=0

a: Δ=(2m-4)^2-4m^2

=4m^2-16m+16-4m^2=-16m+16

Để phương trình có hai nghiệm phân biệt thì -16m+16>0

=>m<1

b: Sửa đề: x1^2+x2^2=5

=>(x1+x2)^2-2x1x2=5

=>(2m-4)^2-2m^2=5

=>4m^2-16m+16-2m^2-5=0

=>2m^2-16m+11=0

=>\(m=\dfrac{8-\sqrt{42}}{2}\)(Vì m<1)

AH
Akai Haruma
Giáo viên
9 tháng 9 2018

Lời giải:

Áp dụng định lý Vi-et cho pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=2m-4\end{matrix}\right.\)

Khi đó, với $m\neq 2$, ta có:

\(\frac{1}{x_1}.\frac{1}{x_2}=\frac{1}{x_2x_2}=\frac{1}{2m-4}\)

\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{2(m-1)}{2m-4}=\frac{m-1}{m-2}\)

Từ đây áp dụng định lý Vi-et đảo, \(\frac{1}{x_1}, \frac{1}{x_2}\) sẽ là nghiệm của pt:

\(X^2-\frac{m-1}{m-2}X+\frac{1}{2m-4}=0\)

1 tháng 6 2016
  • Phương trình: \(x^2-5x+3m+1=0.\)ở dạng tổng quát \(ax^2+bx+c=0\)có hệ số \(a=1;b=-5;c=3m+1\)
  • \(x_1;x_2\)là nghiệm của phương trình thì: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=5\left(a\right)\\x_1\cdot x_2=\frac{c}{a}=3m+1\left(b\right)\end{cases}}\)
  • \(\left|x_1^2-x_2^2\right|=_{ }\left|\left(x_1-x_2\right)\cdot\left(x_1+x_2\right)\right|=5\cdot\left|x_1-x_2\right|=15\Rightarrow\left|x_1-x_2\right|=3\)
  • Nếu \(x_1-x_2=3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=4;x_2=1\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)
  • Nếu \(x_1-x_2=-3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=1;x_2=4\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)
  • Vậy, với m=1 thì PT trên có 2 nghiệm phân biệt thỏa mãn điều kiện đề bài.