Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m=-3 vào pt ta có:
\(\left(1\right)\Leftrightarrow2x^2-\left(m+1\right)x+m+1=0\\ \Leftrightarrow2x^2-\left(-3+1\right)x+\left(-3\right)+1=0\\ \Leftrightarrow2x^2-\left(-2\right)x-2=0\\ \Leftrightarrow x^2+x-1=0\)
\(\Delta=1^2-4.1\left(-1\right)=1+4=5\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-1+\sqrt{5}}{2}\\x_2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
b, Ta có: \(\Delta=\left[-\left(m+1\right)\right]^2-4.2\left(m+1\right)\\ =\left(m+1\right)^2-8\left(m+1\right)\\ =m^2+2m+1-8m-8\\ =m^2-6m-7\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow m^2-6m-7\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-1\\m\ge7\end{matrix}\right.\)
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
x^3-4(x+2)=0
x^3-4x+8-8=0
x^3-4x=0
x(x^2-4)=0
=> x=0 va x^2=4
x=0 va x = -2 va 2
vậy phương trình có 3 nghiệm
a: khi m=1 thì pt sẽ là:
x^2+3x+1=0
=>\(x=\dfrac{-3\pm\sqrt{5}}{2}\)
b: Δ=(2m+1)^2-4m^2
=4m+1
Để phương trình có nghiệm kép thì 4m+1=0
=>m=-1/4
Khi m=-1/4 thì pt sẽ là:
x^2+x*(-1/4*2+1)+(-1/4)^2=0
=>x^2+1/2x+1/16=0
=>(x+1/4)^2=0
=>x+1/4=0
=>x=-1/4
2:
a: y1+y2=-(x1+x2)=-5
y1*y2=(-x1)(-x2)=x1x2=6
Phương trình cần tìm có dạng là;
x^2+5x+6=0
b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6
y1*y2=1/x1*1/x2=1/x1x2=1/6
Phương trình cần tìm là:
a^2-5/6a+1/6=0
a, Th1 : \(m-1=0\Rightarrow m=1\)
\(\Rightarrow-x+3=0\\ \Rightarrow x=3\)
Th2 : \(m\ne1\)
\(\Delta=\left(-1\right)^2-4.\left(m-1\right).3\\ =1-12m+12\\=13-12m \)
phương trình có nghiệm \(\Delta\ge0\)
\(\Rightarrow13-12m\ge0\\ \Rightarrow m\le\dfrac{13}{12}\)
b, Áp dụng hệ thức vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1}{m-1}\\x_1x_1=\dfrac{3}{m-1}\end{matrix}\right.\)
Tổng bình phương hai nghiệm bằng 12 \(\Rightarrow x^2_1+x^2_2=12\)
\(\left(x_1+x_2\right)^2-2x_1x_2=12\\ \Leftrightarrow\left(\dfrac{1}{m-1}\right)^2-2.\left(\dfrac{3}{m-1}\right)=12\\ \Leftrightarrow\dfrac{1}{\left(m-1\right)^2}-\dfrac{6}{m-1}=12\\ \Leftrightarrow1-6\left(m-1\right)=12\left(m-1\right)^2\\ \Leftrightarrow1-6m+6=12\left(m^2-2m+1\right)\\ \Leftrightarrow7-6m-12m^2+24m-12=0\\ \Leftrightarrow-12m^2+18m-5=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{9-\sqrt{21}}{12}\\m=\dfrac{9+\sqrt{21}}{12}\end{matrix}\right.\Rightarrow m=\dfrac{9+\sqrt{21}}{12}\)
1. Với m = -1
Phương trình đã cho trở thành x2 + 2x - 3 = 0
Dễ thấy phương trình có a + b + c = 0 nên có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = -3
Vậy ...
2. a) Để phương trình có hai nghiệm phân biệt thì Δ' > 0
=> 1 - ( 4m + 1 ) > 0
<=> 1 - 4m - 1 > 0 <=> m < 0
b) Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2\\x_1x_2=\frac{c}{a}=4m+1\end{cases}}\)
Để phương trình có hai nghiệm trái dấu thì x1x2 < 0 <=> 4m + 1 < 0 <=> m < -1/4
c) x12 + x22 = 11 <=> ( x1 + x2 )2 - 2x1x2 = 11
<=> 4 - 2( 4m + 1 ) = 11
<=> -8m - 2 = 7
<=> m = -9/8
giải dùm vs ạ