Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
Ta có để pt có 2 nghiệm phân biệt thì:
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m\right)>0\)
\(\Leftrightarrow m< 2\)
Theo vi-et ta có
\(\hept{\begin{cases}x_1+x_2=4-2m\\x_1x_2=m^2-2m\end{cases}}\)
Theo đề ta có: \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-4x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{5m}\)
\(\Leftrightarrow\frac{2}{\left(4-2m\right)^2-4\left(m^2-2m\right)}-\frac{1}{m^2-2m}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{1}{8-4m}-\frac{1}{m^2-2m}=\frac{1}{15m}\)
\(\Leftrightarrow19m+52=0\)
\(\Leftrightarrow m=\frac{52}{19}\)(loại)
Không có m thỏa cái trên
PS: Không biết có nhầm chỗ nào không. Bạn kiểm tra hộ m nhé
Bạn tham khảo tại đây nhé:
Câu hỏi của KHÔNG CẦN BIẾT - Toán lớp 7 - Học toán với OnlineMath
a, thay m = 3 vào pt ta đc
x2 - ( 2 . 3 +1)x + 2.3 = 0
x2 - 7x + 6 =0
ta có a + b+c= 1 -7 + 6=0
\(\Rightarrow\)pt có 2 nghiệm pb x1 = 1
x2 = 6
b, x2 - (2m +1 )x + 2m=0
\(\Delta\)= [ - (2m + 1 )]2 - 4.2m
= 4m2 + 4m + 1 - 8m
= 4m2 - 4m + 1
= (2m-1)2 \(\ge\)0 \(\forall\)m
để pt có 2 nghiệm pb thì 2m - 1 \(\ne\)0
m \(\ne\)1/2
theo hệ thức vi ét ta có
x1 + x2 = 2m + 1
x1 x2 = 2m
ta có | x1| - |x2| = 2
( |x1| - |x2| )2 = 4
x12 - 2 |x1x2| + x22 =4
x12 + 2 x1x2 + x22 - 2x1x2 - 2 | x1x2| = 4
( x1 + x2)2 - 2 |x1x2| = 4
(2m + 1 )2 - 2|2m|=4 (1 )
+, nếu 2m \(\ge\)0 \(\Rightarrow\)m \(\ge\)0 thì
(1)\(\Leftrightarrow\)(2m + 1)2 - 4m = 4
4m2 + 4m + 1 - 4m = 4
4m2 = 3
m2 = 3/4
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{3}}{2}\left(tm\right)\\m=-\frac{\sqrt{3}}{4}\left(ktm\right)\end{cases}}\)
+, 2m < 0 suy ra m < 0 thì
(1) : (2m + 1 )2 + 4m =4
4m2 + 4m + 1 + 4m = 4
4m2 + 8m - 3 =0
\(\Delta\)= 64 + 4.4.3 = 112 > 0
pt có 2 nghiệm pb x1 = \(\frac{-8+\sqrt{112}}{8}\)= \(\frac{-2+\sqrt{7}}{2}\)(ko tm)
x2 = \(\frac{-2-\sqrt{7}}{2}\)(tm)
vậy m \(\in\){\(\frac{\sqrt{3}}{2}\); \(\frac{-2-\sqrt{7}}{2}\)} thì ...........
ko bt có đúng ko nữa
#mã mã#
a, m=2
=> \(x^2-6x+8=0\)=> \(\orbr{\begin{cases}x=2\\x=4\end{cases}}\)
b, Để phương trình có 2 nghiệm
thì \(\Delta'=\left(m+1\right)^2-m^2-4=2m-3\ge0\)=> \(m\ge\frac{3}{2}\)
Theo viet ta có
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+4\end{cases}}\)
Vì x2 là nghiệm của phương trình
nên \(2\left(m+1\right)x_2=x^2_2+m^2+4\)
Khi đó
\(\left(x_1^2+x^2_2\right)+m^2+4\le3m^2+16\)
=> \(\left(x_1+x_2\right)^2-2x_1x_2\le2m^2+12\)
=> \(4\left(m+1\right)^2-2\left(m^2+4\right)\le2m^2+12\)
=.>\(8m\le16\)=>\(m\le2\)
Vậy \(m\le2\)
1. tìm đenta phẩy
sau đó cho đenta phẩy >0
tìm x1+x2,x1*x2 theo hệ thức viets
thay vào ra mà
tính delta rồi c/m cho (1) luôn có 2 ngiệm phân biệt
áp dụng định lí viet rồi thế vô là tìm dc m rồi xem điều kiên
rồi kết luận
\(x^2+2\left(m+2\right)x+4m-1=0\) \(\left(1\right)\)
\(\Delta'=\left(m+2\right)^2-4m+1\)
\(\Delta'=m^2+4m+4-4m+1\)
\(\Delta'=m^2+5>0\forall m\)
\(\Rightarrow pt\left(1\right)\) luôn có 2 nghiệm pb \(\forall m\)
theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=-2\left(m+2\right)\\x_1.x_2=4m-1\end{cases}}\)
theo bài ra \(x^2_1+x^2_2=30\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-30=0\)
\(\Leftrightarrow\left[-2\left(m+2\right)\right]^2-2.\left(4m-1\right)-30=0\)
\(\Leftrightarrow4.\left(m^2+4m+4\right)-8m+2-30=0\)
\(\Leftrightarrow4m^2+16m+16-8m-28=0\)
\(\Leftrightarrow4m^2+8m-12=0\)
\(\Leftrightarrow m^2+2m-3=0\) \(\left(#\right)\)
từ \(\left(#\right)\) ta có \(a+b+c=1+2-3=0\)
\(\Rightarrow pt\left(#\right)\) có 2 nghiệm \(m_1=1;m_2=-3\) ( TM \(\forall m\) )
vậy....
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-3\right)\)
=4m^2-8m+4-4m+12
=4m^2-12m+16
=4m^2-12m+9+7=(2m-3)^2+7>0
=>Phương trình luôn có nghiệm
b: =>(x1+x2)^2-2x1x2=10
=>(2m-2)^2-2(m-3)=10
=>4m^2-8m+4-2m+6-10=0
=>4m^2-10m=0
=>2m(2m-5)=0
=>m=0 hoặc m=5/2