Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2x-4\right)^2-4\left|4-2x\right|+1986=\left(2x-4\right)^2-4\left|2x-4\right|+1986\)
Ta thấy: \(\left|2x-4\right|^2=\left(2x-4\right)^2\)
Đặt t=|2x-4| ta được: t2=(2x-4)2
Suy ra: A=t2-4t+1986=t2-4t+4+1982
=(t-2)2+1982 \(\ge\)1982 (với mọi x)
Dấu "=" xảy ra khi: t=2
<=>|2x-4|=2
Với x\(\ge\)0 ta được: 2x-4=2 <=> x=3
Với x<0 ta được: 4-2x=-2 <=> x=3 (loại)
Vậy GTNN của A là 1982 tại x=3
Đáp án A.
Ta có log 49 28 = 1 2 log 7 28 = 1 + 2 log 7 2 2 = 1 + 2 m 2 .
Ta có : x3+y3+z3=3xyz
<=>x3+y3+3x2y+3xy2+z3-3xyz-3x2y-3xy2=0
<=>(x+y)3+z3-3xy.(x+y+z)=0
<=>(x+y+z)[(x+y)2-(x+y).z+z2]-3xy.(x+y+z)=0
<=>(x+y+z).(x2+2xy+y2-xz-yz+z2-3xy)=0
<=>(x+y+z)(x2+y2+z2-xy-yz-xz)=0
<=>x+y+z=0(loại) hoặc x2+y2+z2-xy-yz-xz=0
*x2+y2+z2-xy-yz-xz=0
<=>2x2+2y2+2z2-2xy-2yz-2xz=0
<=>(x-y)2+(y-z)2+(z-x)2=0
<=>x=y=z
Suy ra: \(P=\frac{xyz}{\left(x+x\right)\left(y+y\right)\left(z+z\right)}=\frac{xyz}{2x.2y.2z}=\frac{1}{8}\)