Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\sqrt{2}\right)^2+a\cdot\sqrt{2}+b=0\)
\(\Leftrightarrow a\sqrt{2}+b=-2\)
Vì b là số nguyên
và -2 cũng là số nguyên
nên \(a\sqrt{2}\) cũng là số nguyên(vô lý)
\(x^2+ax+b=0\) có nghiệm là \(\sqrt{2}\) nên
\(2+a\sqrt{2}+b=0\\ \Leftrightarrow b=a\sqrt{2}\)
Mà \(a,b\in Z\) nên đẳng thức xảy ra khi: \(a=b=0\)
\(\frac{2}{x-1}\)\(=4-m\)
Quy đồng và khử mẫu của phương trình ta được :
2 = ( 4 - m ) x + 4 + m
( 4 - m ) x = 2 + m
Để phương trình có nghiệm âm thì :
m - 4 dương và 2 + m âm ( không có giá trị m thỏa mãn )
hoặc m - 4 âm và 2 + m dương ( -3 < m < 4 )
Vậy phương trình có nghiệm âm khi m = { -2 ; -1 ; 0 ; 1 ; 2 ; 3 }
Dựa vào đây mà làm nhé : Câu hỏi của nhi anny - Toán lớp 9 - Học toán với OnlineMath
a/ Thay x=2 vào phương trình P(x)=0. Ta được:
2.22+m.2-10=0
<=> 2m-2=0 => m=1
b/ PT đã cho có dạng: 2x2+x-10=0
<=> 2x2-4x+5x-10=0
<=> 2x(x-2)+5(x-2)=0
<=> (x-2)(2x+5)=0
=> Nghiệm còn lại là: 2x+5=0 => x= -5/2