K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 11 2021

a.

Phương trình có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow\left(m-1\right)\left(m-4\right)< 0\)

\(\Rightarrow1< m< 4\)

b. 

Phương trình có 2 nghiệm dương khi (ko có chữ phân biệt?):

\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m-4\right)\ge0\\x_1+x_2=\dfrac{2\left(m-3\right)}{m-1}>0\\x_1x_2=\dfrac{m-4}{m-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\le5\\\left[{}\begin{matrix}m>3\\m< 1\end{matrix}\right.\\\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< 1\\4< m\le5\end{matrix}\right.\)

c.

Phương trình có 2 nghiệm âm khi:

\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m-4\right)\ge0\\x_1+x_2=\dfrac{2\left(m-3\right)}{m-1}< 0\\x_1x_2=\dfrac{m-4}{m-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\le5\\1< m< 3\\\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Trường hợp 1: m=0

Phương trình sẽ là \(-2\cdot\left(-1\right)x+0-2=0\)

=>2x-2=0

=>x=1

=>Loại

Trường hợp 2: m<>0

Để phương trình có hai nghiệm trái dấu thì m(m-2)<0

=>0<m<2

NV
3 tháng 3 2022

a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)

Với \(m\ne0\) pt vô nghiệm khi:

\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)

\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)

\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)

c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)

\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)

Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

4 tháng 5 2017

a) Để phương trình có hai nghiệm trái dấu khi và chỉ khi: \(ac< 0\Leftrightarrow2\left(m+2\right)< 0\)\(\Leftrightarrow m+2< 0\)\(\Leftrightarrow m< -2\). (1)
Tổng hai nghiệm đó bằng - 3 khi và chỉ khi:
\(x_1+x_2=\dfrac{2m+1}{m+2}=-3\)
\(\Rightarrow2m+1=3\left(m+2\right)\)\(\Leftrightarrow m=-5\)
Kết hợp với điều kiện (1) ta được \(m=-5\) là giá trị cần tìm.

 

4 tháng 5 2017

b) Phương trình có nghiệm kép khi và chỉ khi:
\(\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+2\ne0\\\left(2m+1\right)^2-4.2.\left(m+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(m=\dfrac{5}{2}\) hoặc \(m=-\dfrac{3}{2}\) là giá trị cần tìm.

Trường hợp 1: m=-1

Pt sẽ là 6x=0

hay x=0

=>Loại

Trường hợp 2: m<>-1

Để phương trình có hai nghiệm cùng âm thì 

\(\left\{{}\begin{matrix}\text{Δ}>0\\\dfrac{2\left(m+4\right)}{m+1}< 0\\\dfrac{m+1}{m+1}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2m+8\right)^2-4\left(m+1\right)^2>0\\\dfrac{m+4}{m+1}< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+32m+64-4\left(m^2+2m+1\right)>0\\-4< m< -1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+32m+64-4m^2-8m-4< 0\\-4< m< -1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}24m+60< 0\\-4< m< -1\end{matrix}\right.\Leftrightarrow-4< m< -2.5\)

5 tháng 12 2021

D

NV
5 tháng 12 2021

Pt đã cho có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow\left(m+1\right)\left(m-2\right)< 0\)

\(\Leftrightarrow-1< m< 2\)

Trường hợp 1: m=10

Phương trình sẽ là -40x+6=0

hay x=3/20

=>m=10 sẽ thỏa mãn trường hợp a

Trường hợp 2: m<>10

\(\Delta=\left(-4m\right)^2-4\left(m-10\right)\left(m-4\right)\)

\(=16m^2-4\left(m^2-14m+40\right)\)

\(=16m^2-4m^2+56m-160\)

\(=12m^2+56m-160\)

\(=4\left(3m^2+14m-40\right)\)

\(=4\left(3m^2-6m+20m-40\right)\)

\(=4\left(m-2\right)\left(3m+20\right)\)

a: Để phương trình có nghiệm thì (m-2)(3m+20)>=0

=>m>=2 hoặc m<=-20/3

b: Để phương trình có hai nghiệm phân biệt đều dương thì 

\(\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\\dfrac{4m}{m-10}>0\\\dfrac{m-4}{m-10}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\m\in\left(-\infty;0\right)\cup\left(10;+\infty\right)\\m\in\left(-\infty;4\right)\cup\left(10;+\infty\right)\end{matrix}\right.\)

\(\Leftrightarrow m\in\left(-\infty;-\dfrac{20}{3}\right)\cup\left(10;+\infty\right)\)

Trường hợp 1: m=0

Phương trình sẽ là:

\(0x^2-2\cdot\left(0-1\right)x+0-3=0\)

=>2x-3=0

hay x=3/2

=>Phương trình có đúng một nghiệm dương, còn hai trường hợp còn lại thì ko đúng

Trường hợp 2: m<>0

a: 

Để phương trình có hai nghiệm trái dấu thì m(m-3)<0

hay 0<m<3

b:\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)

\(=4m^2-8m+4-4m^2+12m\)

=4m+4

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m>-1\\\dfrac{2\left(m-1\right)}{m}>0\\\dfrac{m-3}{m}>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1< m< 0\\m>3\end{matrix}\right.\)

1 tháng 12 2021

PT có 2 nghiệm \(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2+2\right)\ge0\)

\(\Leftrightarrow4m^2+8m+4-4m^2-8\ge0\\ \Leftrightarrow8m-4\ge0\Leftrightarrow m\ge\dfrac{1}{2}\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=8m-4\\ x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=2m^2+8m\)

Ta có \(\left|x_1^4-x_2^4\right|=\left(x_1^2+x_2^2\right)\left|x_1-x_2\right|\left|x_1+x_2\right|\)

\(\Leftrightarrow\left|x_1^4-x_2^4\right|=\left(2m^2+8m\right)\sqrt{\left(x_1-x_2\right)^2}\left|2m+2\right|\\ =8\left(m^2+4m\right)\left|m+1\right|\sqrt{2m-1}\)

Mà \(\left|x_1^4-x_2^4\right|=16m^2+64m=16\left(m^2+4m\right)\)

\(\Leftrightarrow\left(m^2+4m\right)\left|m+1\right|\sqrt{2m-1}-2\left(m^2+4m\right)=0\\ \Leftrightarrow\left(m^2+4m\right)\left(\left|m+1\right|\sqrt{2m-1}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(ktm\right)\\m=-4\left(ktm\right)\\\left|m+1\right|\sqrt{2m-1}=2\end{matrix}\right.\\ \Leftrightarrow\left(m+1\right)^2\left(2m-1\right)=4\\ \Leftrightarrow2m^3+3m^2-5=0\\ \Leftrightarrow2m^3-2m^2+5m^2-5=0\\ \Leftrightarrow2m^2\left(m-1\right)+5\left(m-1\right)\left(m+1\right)=0\\ \Leftrightarrow\left(m-1\right)\left(2m^2+5m+5\right)=0\\ \Leftrightarrow m=1\left(2m^2+5m+5>0\right)\left(tm\right)\)

Vậy \(m=1\) thỏa mãn đề bài