Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x-3\right)\left(x-5\right)+2\)
\(=x^2-8x+15+2\)
\(=\left(x^2-8x+16\right)+1\)
\(=\left(x-4\right)^2+1\)
Vì \(\left(x-4\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-4\right)^2+1\ge1>0;\forall x\)
Vậy....
2) tương tự
\(1.\left(x-3\right)\left(x-5\right)+2\)
\(=x^2-8x+15+2\)
\(=x^2-2.4x+16+1\)
\(=\left(x-4\right)^2+1\)
Do \(\left(x-4\right)^2\ge0\)nên \(\left(x-4\right)^2+1\ge1\)
hay \(\left(x-3\right)\left(x-5\right)+2>0\)
Mình ko ghi lại đề , bạn ghi ra xong rồi suy ra như mình nha .
1) \(=>A=\left(6x^2+3x-10x-5\right)-\left(6x^2+14x-9x-21\right)\)
\(=>A=-12x+16\)
2) \(=>B=8x^3+27-8x^3+2=29\)
3)\(=>C=[\left(x-1\right)-\left(x+1\right)]^3=\left(-2\right)^3=-8\)
4)\(=>D=[\left(2x+5\right)-\left(2x\right)]^3=5^3=125\)
5)\(=>E=\left(3x+1\right)^2-\left(3x+5\right)^2+12x+2\left(6x+3\right)\)
\(=>E=\left(3x+1+3x+5\right)\left(3x+1-3x-5\right)+12x+12x+6\)
\(=>E=\left(6x+6\right)\left(-4\right)+24x+6=-24x-24+24x+6=-18\)
6)\(=>F=\left(2x^2+3x-10x-15\right)-\left(2x^2-6x\right)+x+7=-8\)
k cho mik nha ,
Thay x =-2 vào phương trình :
\(4.\left(-2\right)^2-25+k^2+4k.\left(-2\right)=0\)
\(\Leftrightarrow16-25+k^2-8k=0\)
\(\Leftrightarrow k^2-8k-9=0\)
\(\Leftrightarrow\left(k-9\right)\left(k+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}k-9=0\\k+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}k=9\\k=-1\end{cases}}\)
Vậy để phương trình nhận x =-2 làm nghiệm \(\Leftrightarrow k\in\left\{9;-1\right\}\)
\(\)
(x-3)(x2+3x+9)+x(5-x2)=6x
x(x2+3x+9)-3(x2+3x+9)+x(5-x2)=6x
x3+3x2+9x-3x2-9x-27+5x-x3-6x=0
(x3-x3)+(3x2-3x2)+(9x-9x+5x-6x)=27
-x=27
x=-27
(x+3)(-5x-9+3x+5)=0
(x+3)(-2x-4)=0
x=-3; x=-2