Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, bạn tự làm
b, Thay x = 3 vào pt trên ta được
\(9-3m-3=0\Leftrightarrow6-3m=0\Leftrightarrow m=2\)
Thay m = 2 vào ta được \(x^2-2x-3=0\)
Ta có a - b + c = 1 + 2 - 3 = 0
vậy pt có 2 nghiệm x = -1 ; x = 3
c, \(\Delta=m^2-4\left(-3\right)=m^2+12>0\)
vậy pt luôn có 2 nghiệm pb
\(x_1x_2+5\left(x_1+x_2\right)-1997=0\)
\(\Rightarrow-3+5m-1997=0\Leftrightarrow5m-2000=0\Leftrightarrow m=400\)
a, Thay x = -5 ta đc
\(25-5m-35=0\Leftrightarrow-5m-10=0\Leftrightarrow m=-2\)
Thay m = -2 ta đc \(x^2-2x-35=0\Leftrightarrow\left(x+5\right)\left(x-7\right)=0\Leftrightarrow x=-5;x=7\)
b, \(\Delta=m^2-4\left(-35\right)=m^2+4.35>0\)
Vậy pt trên luôn có 2 nghiệm pb
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=86\Rightarrow m^2-2\left(-35\right)=86\)
\(\Leftrightarrow m^2=16\Leftrightarrow m=-4;m=4\)
a: Thay x=-5 vào pt, ta được:
25-5m-35=0
=>5m+10=0
hay m=-2
Theo đề, ta có: \(x_1x_2=-35\)
nên \(x_2=7\)
b: \(ac=-1\cdot35< 0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=86\)
\(\Leftrightarrow m^2-2\cdot\left(-35\right)=86\)
hay \(m\in\left\{4;-4\right\}\)
a: Thay m=2 vào pt, ta được:
\(x^2-2x+1=0\)
hay x=1
b: Thay x=2 vào pt, ta được:
\(4-2m+m-1=0\)
=>3-m=0
hay m=3
=>Phương trình sẽ là \(x^2-3x+2=0\)
hay \(x_2=1\)
c: \(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)\)
\(=m^2-4m+4=\left(m-2\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=2\)
\(\Leftrightarrow m^2-2m+2-2=0\)
\(\Leftrightarrow m\left(m-2\right)=0\)
=>m=0 hoặc m=2
a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)
Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)
Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.
\(\Delta=m^2+12>0\) ; \(\forall m\)
\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)
Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)
\(\text{Δ}=\left(-m\right)^2-4\left(m-5\right)\)
\(=m^2-4m+20\)
\(=m^2-4m+4+16=\left(m-2\right)^2+16>0\forall m\)
=>Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\\x_1\cdot x_2=\dfrac{c}{a}=m-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_2=1\\x_1+x_2=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=1-m\\x_1=m-x_2=m-1+m=2m-1\end{matrix}\right.\)
\(x_1\cdot x_2=m-5\)
=>\(\left(1-m\right)\left(2m-1\right)=m-5\)
=>\(2m-1-2m^2+m-m+5=0\)
=>\(-2m^2+2m+4=0\)
=>\(m^2-m-2=0\)
=>(m-2)(m+1)=0
=>\(\left[{}\begin{matrix}m-2=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(nhận\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)
\(\Delta'=9-6m+m^2=\left(m-3\right)^2\ge0;\forall m\)
\(\Rightarrow\) Pt luôn có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\\x_1x_2=6m-m^2\end{matrix}\right.\)
Do \(x_1\) là nghiệm nên: \(x_1^2+6x_1+6m-m^2=0\Leftrightarrow2x_1^2+12x_1=2m^2-12\)
\(x_1^3-x_2^3+2x_1^2+12x_1+72=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+2m^2-12m+72=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(m^2-6m+36\right)+2m^2-12m+72=0\)
\(\Leftrightarrow\left(x_1-x_2+2\right)\left(m^2-6m+36\right)=0\)
\(\Leftrightarrow x_1-x_2+2=0\) (do \(m^2-6m+36=\left(m-3\right)^2+27>0;\forall m\))
Kết hợp với \(x_1+x_2=-6\) ta được:
\(\left\{{}\begin{matrix}x_1-x_2=-2\\x_1+x_2=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-4\\x_2=-2\end{matrix}\right.\)
Thế vào \(x_1x_2=6m-m^2\)
\(\Rightarrow8=6m-m^2\Rightarrow m^2-6m+8=0\Rightarrow\left[{}\begin{matrix}m=2\\m=4\end{matrix}\right.\)
a, Thay m = -1 vào phương trình trên ta được
\(x^2+4x-5=0\)
Ta có : \(\Delta=16+20=36\)
\(x_1=\frac{-4-6}{2}=-5;x_2=\frac{-4+6}{2}=1\)
Vậy với m = -1 thì x = -5 ; x = 1
b, Vì x = 2 là nghiệm của phương trình trên nên thay x = 2 vào phương trình trên ta được :
\(4+8+3m-2=0\Leftrightarrow3m=-10\Leftrightarrow m=-\frac{10}{3}\)
Vậy với x = 2 thì m = -10/3
c, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay
\(16-4\left(3m-2\right)=16-12m+8=4m+8>0\)
\(\Leftrightarrow8>-4m\Leftrightarrow m>-2\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=3m-2\end{cases}}\)
\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow x_1=-4-x_2\)(1)
suy ra : \(-4-x_2+2x_2=1\Leftrightarrow-4+x_2=1\Leftrightarrow x_2=5\)
Thay vào (1) ta được : \(x_1=-4-5=-9\)
Mà \(x_1x_2=3m-2\Rightarrow3m-2=-45\Leftrightarrow3m=-43\Leftrightarrow m=-\frac{43}{3}\)
\(x^2+mx+4=0\left(1\right)\)
+)Vì phương trình có 1 nghiệm là -1, do đó theo tính chất nhấm nghiệm thì có \(a-b+c=0\)
⇒ nghiệm còn lại là \(-4\).
+) Để phương trình có nghiệm thì \(\Delta\ge0\) hay \(m^2-16\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-4\\m\ge4\end{matrix}\right.\)
Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=4\end{matrix}\right.\)
Có : \(x_1^2+x^2_2=6m-13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6m-13\)
\(\Leftrightarrow m^2-8=6m-13\)
\(\Leftrightarrow m^2-6m+5=0\Leftrightarrow\left(m-1\right)\left(m-5\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=5\left(n\right)\end{matrix}\right.\)
Vậy...