K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2023

Em ghi đề cho chính xác lại!

23 tháng 5 2023

Em ko ghi đc dấu căn nên em đóng ngoặc nghĩa là cả cụm đó dưới dấu căn

11 tháng 2 2022

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)

\(\Rightarrow m^2-4.1.\left(-2\right)>0\\ \Rightarrow m^2+8>0\left(luôn.đúng\right)\)

Vậy pt luôn có 2 nghiệm phân biệt

Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-2\end{matrix}\right.\)

\(x^2_1x_2+x_1x^2_2=2021\\ \Leftrightarrow x_1x_2\left(x_1+x_2\right)=2021\\ \Leftrightarrow\left(-m\right)\left(-2\right)=2021\\ \Leftrightarrow2m=2021\\ \Leftrightarrow m=\dfrac{2021}{2}\)

 

Để pt có 2 nghiệm thì

\(\Delta>0\\ \Rightarrow m^2-4.1.\left(-2\right)>0\\ \Rightarrow m^2+8>0.đúng.\forall.m\) 

Vậy pt luôn có 2 nghiệm phân biệt

Áp dụng đlí Viét ta có

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=-m\\x_1x_2=\dfrac{c}{a}=-2\end{matrix}\right.\) 

Lại có

\(x_1x_2+x_1x_2=2021\\ \Rightarrow x_1x_2\left(x_1+x_2\right)< 2021\\ \Rightarrow-2\left(-m\right)=2021\Rightarrow2m=2021\\ \Rightarrow m=\dfrac{2021}{2}\)

6 tháng 6 2023

\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)

Phương trình có hai nghiệm phân biệt :

\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)

Theo vi ét : 

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)

Vậy \(m=2\)

3:

\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)

=4m^2-4m+1+8m+44

=4m^2+4m+45

=(2m+1)^2+44>=44>0

=>Phương trình luôn có hai nghiệm pb

|x1-x2|<=4

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)

=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)

=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)

=>0<=4m^2+4m+45<=16

=>4m^2+4m+29<=0

=>(2m+1)^2+28<=0(vô lý)

22 tháng 5 2021

Để pt có hai nghiệm pb\(\Leftrightarrow\Delta>0\Leftrightarrow m^2-4>0\) \(\Leftrightarrow\left(m-2\right)\left(m+2\right)>0\)\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

Theo định lí viet có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=1\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow m^2-2+2m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt{3}\left(L\right)\\m=-1-\sqrt{3}\left(N\right)\end{matrix}\right.\)

Vậy \(m=-1-\sqrt{3}\)

17 tháng 5 2023

∆ = m² - 4(m - 5)

= m² - 4m + 5

= (m² - 4m + 4) + 1

= (m - 2)² + 1 > 0 với mọi m

Phương trình luôn có 2 nghiệm phân biệt

Theo Viét ta có:

x₁ + x₂ = m (1)

x₁.x₂ = m - 5 (2)

x₁ + 2x₂ = 1 (3)

Lấy (3) - (1) ta được x₂ = 1 - m thay vào (1) ta được

x₁ + 1 - m = m

⇔ x₁ = 2m - 1

Thay x₁ = 2m - 1 và x₂ = 1 - m vào (2) ta được:

(2m - 1)(1 - m) = m - 5

⇔ 2m - 2m² - 1 + m - m + 5 = 0

⇔ -2m² + 2m + 5 = 0

∆ = 4 - 4.(-2).5

= 44

m₁ = -1 + √11

m₂ = -1 - √11

Vậy m = -1 + √11; m = -1 - √11 thì phương trình đã cho có hai nghiệm thỏa mãn x₁ + 2x₂ = 1

23 tháng 2 2022

a, Thay m=0 vào pt ta có:

\(x^2-x+1=0\)

\(\Rightarrow\) pt vô nghiệm 

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)